The **Ultimate** Formula Sheet for SAT Math

These formulas are provided in the reference information at the beginning of each SAT math section:

Area of a Circle: $A = \pi r^2$

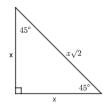
Circumference of a Circle: $C = 2\pi r$

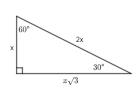
Area of a Rectangle: A = Iw

Area of a Triangle: $A = \frac{1}{2}bh$

Pythagorean Theorem: $a^2 + b^2 = c^2$

Special Right Triangles:


Volume of a Rectangular Prism (Box): V = lwh


Volume of a Cylindar: $V = \pi r^2 h$

Volume of a Sphere: $V = \frac{4}{3}\pi r^3$

Volume of a Cone: $V = \frac{1}{3}\pi r^2 h$

Volume of a Pyramid: $V = \frac{1}{3}lwh$

Fractions, Decimals, and Percentages: (for this section, r is the percentage in a form)

Fraction = part

Ohrease by a percent: multiply by (1+r)Dichase by a percent: multiply by (1-r)Simple Interior

Interest Compounded Annually: $A = P(1+r)^t$

Interest Compounded n times per year:

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

Percent Increase or Decrease:

$$\frac{\left|\textit{old}-\textit{new}\right|}{\textit{old}} \times 100\%$$

Rates, Ratios, and Proportions:

General form of a conversion factor:

$$\left(\frac{\text{ending_units}}{\text{starting_units}}\right)$$

Example:
$$10 feet \left(\frac{12 inches}{1 foot} \right) = 120 inches$$

Concentration of A x Volume of A

- + Concentration of B x Volume of B
- = Final concentration (Vol. of A + Vol. of B)

Distance = Rate x Time