a. Circularization of the phage chromosome - Lambda DNA is a double stranded linear molecule with small single stranded regions at the 5' ends. These single stranded ends are complementary (**cohesive ends**) so that they can base pair and produce a circular molecule. In the cell the free ends of the circle can be ligated to form a covalently closed circle as illustrated in Figure 5.

b. Site-specific recombination - A recombination event, catalyzed by a phage coded enzyme, occurs between a particular site on the circularized phage DNA and a particular site on the host chromosome. The result is the integration of the phage DNA into the host chromosome as illustrated in Figure 6.

c. Repression of the phage genome - A phage coded protein, called a repressor, is made

which binds to a particular site on the phage DNA, called the **operator**, and shuts off transcription of most phage genes EXCEPT the repressor gene. The result is a stable repressed phage genome which is integrated into the host chromosome. Each temperate phage will only repress its own DNA and not that from other phage, so that repression is very specific (immunity to superinfection with the same phage).

3. Events Leading to Exhibition of Lyper Anytime a hysogenic bacterium **3** showed to adverse conditions, the lysogenic state can be terminated. This process is called **induction**. Conditions which favor the termination of the lysogenic state include: desiccation, exposure to UV or ionizing radiation, exposure to mutagenic chemicals, etc. Adverse conditions lead to the production of proteases (rec A protein) which destroy the repressor protein. This in turn leads to the expression of the phage genes, reversal of the integration process and lytic multiplication. Release