Multivariable Calculus

15 November 2023 19.42

Real Numbers

- Real numbers can be positive, zero, or negative, and they can be rational or irrational.
- Denote the set of all real numbers as *R*.

Representation in 1 Dimension (R)

- Real numbers can be thought of as points on a line when an origin and unit length are chosen.
- Real numbers are also referred to as scalars.

Representation in 2 Dimensions (R^2)

- Pairs of real numbers $((x_1, x_2))$ form elements of R^2 .
- These elements label points in a plane when an origin and orthogonal axes are chosen.
- These elements are also called 2-dimensional vectors and can be represented as arrows.

- Iriples of real numbers ((x₁,x₂,x₃)) form elements of R³.
 These elements label points in space when an origin and the controgonal axes are chosen.
 These elements are 3-dimensional vectors
 Generalizing to 2
 Anopresents all n-tuples of real contoers ((x₁,x₂,...,x_n).
 These elements are points in n-dimensional space and are collected.

Vector Operations

- A scalar (α) can multiply a vector (x) to produce αx .
- Vectors (x and y) can be added (x + y) or subtracted (x y).
- These operations define a vector space.

Geometric Interpretation

- Scalar multiplication (αx) changes the length and direction of a vector.
- Vector addition (x + y) can be visualized as completing a parallelogram or connecting the heads of vectors.
- Vector subtraction (x y) can be visualized as completing a parallelogram or connecting the heads of vectors.