- Understand that acids and bases can be found everywhere
- Understand the logarithmic nature of the pH scale
- Calculate the pH of a strong acid or base

Techniques in Lab

• pH meter

Theory

Acids and bases

A chemical species is an acid or base, depending on how it reacts in aqueous solution.

According to the **Brønsted-Lowry** definition, an acid (HA) is a species that donates a proton in aqueous solution. A base (B) is a species that accepts a proton in aqueous solution. Compare this with <u>Arrhenius definition</u> and <u>Lewis definition</u>.

The ability to accept or donate a proton depends on the structure of the molecule.

The protons (H ⁺) donated by an acid complete with the mater molecules to form hydronium ions (H₃O⁺). A base receives pool ons from water molecules. The water molecules then become hydroxide in SAN⁺).

These two different reactions (ccur because water is **amphoteric** - it can either donate or receive protons.

The <u>pH scale</u> represents how acidic or basic a substance is.

It is important to note that acids and bases, especially strong ones, can corrode metals and burn human skin.

Importance of acids and bases

In our bodies, in our homes, and in our industrial society, <u>acids and bases</u> play key roles. Proteins, enzymes, blood, genetic material, and other components of living matter contain both acids and bases.

We seem to like the sour taste of acids; we add them to soft drinks, salad dressings, and spices. Many foods, including citrus fruits and some vegetables, contain acids.

We perceive bases as bitter and slippery. Therefore, foods with a <u>high pH</u> are not common.

