II) Measuring MOLECULAR MASSES ['Universally low masses'] of atoms / molecules

1) ATOMIC MASS

[Atomic mass unit (amu), Unified mass (u), dalton (Da)]

$$1 \text{amu} = 1.66 \times 10^{-24} \text{ g} = \frac{1}{12} \text{mass of } ^{12}\text{C}$$

Ex: Mass of one H atom = 1.008 amu= 1.6736×10^{-24} g

2) MOLECULAR MASS / MOLECULAR WEIGHT of a compound

Molecular mass of a compound is the sum of the atomic masses of all the atoms in the molecule.

Ex: Molecular mass(in amu) of one H_2 O molecule = 2(1.008 amu) + 16.00 amu = 18.02 amu.

Measuring MOLES ['Universally huge numbers'] in a substance:

1) MOLE (Unit: mol)

Amount of substance is measured interms of the SI unit **mole**.

One mole = 6.023×10^{23} = Avogadro Number (N_A) = no. of atoms in 12 g of ¹²C

le.co.V 2) MOLAR MASS/ GRAM MOLAR MASS / GRAM MOLAR WEIGHT(GMW)

Molar Mass is the mass of substance in grams per mole.

Ex: Molar mass of $H_2O = 18.02 \text{ g/mol} = 18 \text{ g/mol}$

Gram Molar Weight is the molar mass measured in Con-

Ex: GMW of H_2 O = 18.02g = Average ma.

Formula 1: Number of moles $n = \frac{g(\text{weight of sub thee in grams)}}{g(\text{weight of sub thee in grams)}}$

int of substance =n×GMW

(weight of ubstance in grams) $\times N_A = n \times N_A$

Number of molecules = No. of moles \times Avogadro Number.

Note 1: Molecularity is applicable on very small entities like atoms, molecules with units amu, u.

Note 2: Molar concept is applicable on very big entities like moles with units g, kg.

Note 3: Though Mass and Weight are different entities, in practice both are used interchangeably.

BULLET MASTER'S

MOLES ARE CURRENCY OF CHEMISTRY **DOZEN vs MOLE**

D-Mart Shopping లో...

ఒక Apple weight 100g මගාම් weight of one dozen Apples= 1200g = 1.2 kg

In our Stoichiometry....

Weight of 1 dozen Apples = 1200 g; Weight of 1 mole of H atoms $\approx 1g = 1.007 g$

Weight of 2 dozen Apples = 2400g; Weight of 1 mole of H_2 molecules = 2.016 g

Weight of 1 dozen Pens & Pencils=120g; Weight of 1 mole of H₂O molecules=18.0153 g

Avogadro సంఖ్య ఎంత పెద్దదంటే?

భూమి మీద ఉన్న 3వేల మిలియన్ల మంది Avogadro సంఖ్యలో ఉన్న పరమాణువులను లెక్కించడానికి సెకనుకు ఒక పరమాణువు చౌప్పున రోజుకు 8 గంటలు పనిచేస్తే మొత్తం 20 మిలియన్ల సంవత్సరాల సమయం పడుతుంది.