E.g.: i.
$$\lim_{x \to 1} \left(\frac{x+2}{x+5} \right) = \frac{1+2}{1+5} = \frac{3}{6} = \frac{1}{2}$$

ii.
$$\lim_{x \to 2} \left(\frac{x^2 + 2x - 5}{3x+5} \right) = \frac{2^2 + 2 \times 2 - 5}{3 \times 2 + 5} = \frac{4 + 4 - 5}{6 + 5} = \frac{3}{11}$$

iii.
$$\lim_{x \to -2} \left(\frac{x^2 + 3x + 2}{x+3} \right) = \frac{(-2)^2 + 3 \times (-2) + 2}{-2 + 3} = \frac{4 - 6 + 2}{1} = \frac{0}{1} = 0$$

iv.
$$\lim_{x \to 3} (3x + 2) \left(x^2 + 2x \right) = (3 \times 3 + 2) \left(3^2 + 2 \times 3 \right) = (9 + 2)(9 + 6) = 11 \times 15 = 165$$

Evaluation of $\lim_{x \to a} \frac{f(x)}{g(x)}$, where $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$

 $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$, when $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, is known as indeterminate form.

The form $\frac{0}{0}$ is called indeterminate form.

Note: The other indeterminate forms are $\frac{\infty}{\infty}$, $0 \times \infty$, $\infty - \infty$, 0^0 , 1^∞ and ∞^0 (1)

We cannot find the limits such functions directly. The following electhods are used to find the limits:

1. Factorization Method:

- a) Factorize the non-endor and denominate and eancel the common factors from the numerator and ne tenominator.
- b) Be sure that the limit of the resulting denominator is non-zero.
- c) Apply quotient rule of limit.

E.g.: Evaluate
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x - 3} = \frac{0}{0}$$

= $\lim_{x \to 3} \frac{(x - 2)(x - 3)}{x - 3} = \lim_{x \to 3} (x - 2) = 3 - 2 = 3$

2. Substitution Method:

In this method, put x = a + h. As $x \to a$, $h \to 0$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{h \to 0} \frac{f(a+h)}{g(a+h)}$. It can be simplified

1

by cancelling the powers of h and can be simplified.

E.g.: Evaluate $\lim_{x \to \pi} \frac{\sin x}{\pi - x} = \frac{\sin \pi}{\pi - \pi} = \frac{0}{0}$

3. **Product rule**: If u and v are functions of x, then derivative of the product of two functions is equal to *first function x derivative of the second function* + (*plus*) second function x derivative of the first function.

i.e.,
$$\frac{d}{dx}(uv) = u \cdot \frac{d}{dx}(v) + v \cdot \frac{d}{dx}(u)$$

E.g.: i.
$$y = e^{3x} \sin 4x$$

$$\frac{dy}{dx} = e^{3x} \frac{d}{dx} (\sin 4x) + \sin 4x. \frac{d}{dx} (e^{3x})$$

$$= e^{3x} \cdot \cos 4x. 4 + \sin 4x e^{3x}. 3 = e^{3x} (4 \cos 4x + 3 \sin 4x)$$
ii. $y = x^2 \tan x$

$$\frac{dy}{dx} = x^2 \frac{d}{dx} (\tan x) + \tan x \frac{d}{dx} (x^2)$$

$$= x^2 \sec^2 x + \tan x. 2x = x^2 \sec^2 x + 2x \tan x$$
Corollary of product rule:
If u , v and w are functions of x , then $\frac{d}{dx} + v = \frac{1}{4x} \frac{d}{dx} (w) + w \cdot \frac{d}{dx} (u) + u w \cdot \frac{d}{dx} (v)$
E.g.: $y = x^2 e^x \tan x$
 $\frac{dy}{dx} = x^2 \frac{1}{e^x} \frac{d}{dx} (\tan x) + 0 \ln 2(1)^{\frac{1}{2}+x^2} \tan x \frac{d}{dx} (e^x)$

$$= x^2 e^x \sec^2 x + e^x \tan x. 2x + x^2 \tan x e^x$$

$$= xe^x (x \sec^2 x + (2 + x) \tan x)$$

4. **QUOTIENT FORMULA**: If *u* and *v* are any two functions of *x*, then quotient of two functions is equal to $(2^{nd}$ function x derivative of the 1^{st} function minus 1^{st} function x derivative of the 2^{nd} function) divided by square of the 2^{nd} function.

i.e.,
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \cdot \frac{d}{dx}(u) - u \cdot \frac{d}{dx}(v)}{v^2}$$

E.g.:
$$y = \frac{\sin x + \cos x}{\sin x - \cos x}$$
.
$$\frac{dy}{dx} = \frac{(\sin x - \cos x)\frac{d}{dx}(\sin x + \cos x) - (\sin x + \cos x)\frac{d}{dx}(\sin x - \cos x)}{(\sin x - \cos x)^2}$$

Hsslive.in