
 sensorData=0;

 }

 private void calibrate(int iSeed)

 {

 // Do some calibration here

 }

 protected void seedCalibration(int iSeed)

 {

 calibrate(iSeed);

 }

 public int getSensorData()

 {

 // Check sensor here

 return sensorData;

 }

 }

Conditionals

Java includes conditional statements, which can be used to execute snippets of code if, and only if, certain conditions

are met. Typically, a conditional statement involves two sides. If the two sides are equivalent, the statement is true,

otherwise it is false.

Java has all the typical conditional operators, such as:

 == equal to, as in (a == b)

 != not equal to, as in (x != y)

Preview from Notesale.co.uk

Page 13 of 72

 kitty.setName("Wookie");

 }

 Cat haveKitten()

 {

 Cat kitten = new Cat("Luke");

 return kitten;

 }

Finally, let’s call these methods and see how they act upon Cat object instances:

Cat cat1 = new Cat("Jabba");

Cat cat2 = new Cat("Leia");

cat1.getName(); // Returns Jabba

cat2.getName(); // Returns Leia

messWithCat(cat1);

changeKitty(cat2);

Cat cat3 = haveKitten();

cat1.getName(); // Returns Jabba – Note that object remains unchanged!

cat2.getName(); // Returns Wookie

cat3.getName(); // Returns Luke

Wrapping Up

You've just completed a crash-course of the Java programming language. While you may not be ready to write your

first Java app, you should be able to work through the simplest of the Android sample application Java classes and

determine what they’re up to, at least in terms of the Java syntax of things. The first class you’re going to want to look

into for Android development is the Activity class. An Android application uses activities to define different runtime

tasks, and therefore you must define an Activity to act as the entry point to your application. Now that you’ve got a

handle on Java syntax, we highly recommend that you work through a beginner Android tutorial.

Preview from Notesale.co.uk

Page 18 of 72

 if(nemo instanceof SaltwaterFish) {

 // Nemo is a Saltwater fish!

 }

}

Using instanceof in Android Development

So, when it comes to Android development, when is the instanceof feature useful? Well, for starters, the Android

SDK classes are organized in typical object oriented fashion: hierarchically. For example, the classes such as Button,

TextView, and CheckBox, which represent different types of user interface controls, are all derived from the same

parent class: View. Therefore, if you wanted to create a method that took a View parameter, but had different

behavior depending upon the specific type of control, you could use the instanceof mechanism to check the

incoming parameter and determine exactly what kind of view control had been passed in.

For example, the following method takes a View parameter, allowing you to pass in any type of View, but specifically

singles out TextView controls for special processing:

void checkforTextView(View v)

{

 if(v instanceof TextView)

 {

 // This is a TextView control

 } else {

 // This is not a TextView control

 }

}

In this example, we might continue by making a call to a method that is only valid for a TextView object and not the

generic View object—in which case, we would likely cast the View parameter to a TextView prior to making such a

call. If, however, we wanted to make a call that is available in all View objects, but behaves differently in TextView

objects, there is no need to test for this. Java will handle calling the appropriate version of the method specific to

Preview from Notesale.co.uk

Page 20 of 72

trying to use it. This allows the developer to leverage new APIs where available while still supporting the older

devices—all in the same application.

Inspecting Classes

Java classes are represented at runtime using the Class (java.lang.Class) class. This class provides the starting point

for all reflection APIs. Within this class, you’ll find many methods for inspecting different aspects of a class, such as

its fields, constructors, methods, permissions, and more. You can also use the Class method called forName() to load

a non-primitive class (e.g. not int, but Integer) by name dynamically at runtime, instead of at compile time:

String sClassName = "android.app.NotificationManager";

try {

 Class classToInvestigate = Class.forName(sClassName);

 // Dynamically do stuff with this class

 // List constructors, fields, methods, etc.

} catch (ClassNotFoundException e) {

 // Class not found!

} catch (Exception e) {

 // Unknown exception

}

The class (in this case, NotificationManager) need not have the corresponding import statement in your code; you are

not compiling in this class into your application. Instead, the class loader will load the class dynamically at runtime, if

possible. You can then inspect this Class object and use the reflection techniques described in the rest of this tutorial.

Inspecting the Constructors Available Within a Class

You can inspect the constructors available within a given Class. To get just the constructors that are publicly

available, use getConstructors(). However, if you want to inspect those methods specifically declared within the class,

whether they are public or not, use getDeclaredConstructors() instead. Both methods return an array of Constructor

(java.lang.reflect.Constructor) objects.

Preview from Notesale.co.uk

Page 25 of 72

} catch (ClassNotFoundException e) {

 // Class not found

} catch (NoSuchFieldException e) {

 // Field does not exist, likely we are on Android 2.1 or older

 // provide alternative functionality to support older devices

} catch (SecurityException e) {

 // Access denied!

} catch (Exception e) {

 // Unknown exception

}

Once you have a valid Field object, you can get its name using the toGenericString() method. If you have the

appropriate permissions, you can also access the value of that class field using the appropriate get() and set()

methods.

Inspecting the Methods Available Within a Class

You can inspect the methods available within a given Class. To get just the methods that are publicly available,

including inherited methods, use getMethods(). However, if you want to inspect those methods specifically declared

within the class (without inherited ones), whether they are public or not, use getDeclaredMethods() instead. Both

methods return an array of Method (java.lang.reflect.Method) objects.

For example, the following code iterates through the declared methods of a class:

Method[] aClassMethods = classToInvestigate.getDeclaredMethods();

for(Method m : aClassMethods)

{

 // Found a method m

}

Once you have a valid Method object, you can get its name using the toGenericString() method. You can also

examine the parameters used by the method and the exceptions it can throw. Finally, if you have the appropriate

permissions, you can also call the method using the invoke() method.

Preview from Notesale.co.uk

Page 27 of 72

16

17

18

19

 <item>@string/indigo</item>
 <item>@string/violet</item>
 </string-array>
</resources>

To load this array resource in your Activity class, use the getStringArray() method of the Resources object. For

instance:

String aColors[] = getResources().getStringArray(R.array.colorsArray);

Challenge #1: Warm-Up Challenge

Now you’re ready to get started. Load the string array from the resources, as discussed above. Then, iterate through

the array’s contents using a for() loop. Print each string to the Android LogCat debug log using the Log.v() method.

Extra points if you use the shorthand version of for() loops, discussed in Learn Java for Android Development:

Working with Arrays.

Find the answer to this challenge in the challengeOne() method of the downloadable project.

Challenge #2: Stretch Your Skills

Iterate the same array as Challenge #1, but use a different iteration mechanism. For example, use a while() loop

instead. Print each string to the Android LogCat debug log using the Log.v() method.

Find the answer to this challenge in the challengeTwo() method of the downloadable project.

Challenge #3: Reverse!

Iterate the same array backwards. Print each string to the Android LogCat debug log using the Log.v() method.

HINT: Challenge #2 can help.

Find the answer to this challenge in the challengeThree() method of the downloadable project.

Preview from Notesale.co.uk

Page 32 of 72

instance for the inner class, simply use the this syntax. To access the this instance of the enclosing class, you need

to tack on the name of the enclosing class, then a dot, then this. For example:

MyEnclosingClass.this

Take a look at the full implementation of the anonymous inner class, as discussed above, in the full context of its

enclosing class, here called ClassChaosActivity:

package com.androidbook.classchaos;

import java.text.SimpleDateFormat;

import java.util.Date;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class ClassChaosActivity extends Activity {

 public static final String DEBUG_TAG = "MyLoggingTag";

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 final TextView myTextview = (TextView)

findViewById(R.id.TextViewToShow);

 Button myButton = (Button) findViewById(R.id.ButtonToClick);

 myButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

Preview from Notesale.co.uk

Page 43 of 72

How Does Javadoc Work?

Javadoc documentation uses a combination of processing the source code (and inspecting types, parameters, etc.)

and reading special comment tags that the developer provides as metadata associated with a section of code.

A Javadoc-style comment must come just before the code it is associated with. For example, a Javadoc comment for

a class should be just above the class declaration and a comment for a method should be just above the method

declaration. Each comment should begin with a short description, followed by an option longer description. Then you

can include an number of different metadata tags, which must be supplied in a specific order. Some important tags

include:

 @author – who wrote this code

 @version – when was it changed

 @param – describe method parameters

 @return – describe method return values

 @throws – describe exceptions thrown

 @see – link to other, related items (e.g. “See also…”)

 @since – describe when code was introduced (e.g. API Level)

 @deprecated - describe deprecated item and what alternative to use instead

You can also create your own custom tags for use in documentation.

Generate Javadoc-style Comments in Eclipse

While you are writing code in Eclipse, you can generate a Javadoc –style comment by selecting the item you want to

comment (a class name, method name, etc.) and pressing Alt-Shift-J (Cmd-Shift-J on a Mac). This will create a basic

Javadoc-style comment for you to fill in the details.

Simple Javadoc Class Comments

Let’s look at an example. Here’s a simple Javadoc comment that describes a class:

Preview from Notesale.co.uk

Page 47 of 72

/**

 * Activity for loading layout resources

 *

 * This activity is used to display different layout resources for a tutorial on user

interface design.

 *

 * @author LED

 * @version 2010.1105

 * @since 1.0

 */

public class LayoutActivity extends Activity {

Here’s what it will look like when you generate the Javadoc documentation:

Preview from Notesale.co.uk

Page 48 of 72

Working with the String Class

The String class is available as part of the java.lang package, which is included within the Android SDK for

developers to use. The complete documentation for the String class can be found with the Android SDK

documentation.

The String class represents an immutable (unchangeable) sequence of Unicode (16-bit encoding) characters,

appropriate for storing characters in any language (English, German, Japanese, and so on).

So what does this have to do with Android development? Well, strings are used to store content displayed on

application screens, or to store the input taken in from a user. Android developers are constantly loading, creating,

and manipulating string data. So let’s look at some of the stuff we can do with the String class.

Creating Strings

The String class has numerous constructors, for creating and instantiating string variables. String variables can be set

to empty using the null keyword. You can also set its content from byte, character, or other String data. For example,

here are some ways to create String variables for use within your applications (some are initialized from the variables,

like uVowels and sVowelBuilder, defined earlier in this tutorial):

String strVowels1 = "aeiou";

String strVowels2 = new String("aeiou");

String strVowels3 = new String(sVowelBuilder);

String strVowels4 = new String(sbVowels);

String strVowels5 = new String(uVowels);

String strVowels6 = new String(abyteVowels2);

String strVowels7 = new String(abyteVowelsU);

String strVowels8 = new String("a" + "e" + "iou");

String strVowels9 = new String(new char[]{'\u0061',

'\u0065','\u0069','\u006F','\u0075'});

String strVowels10 = new String(new byte[]{ '\u0061',

Preview from Notesale.co.uk

Page 55 of 72

What’s a Developer to Do?

Pop quiz! Which of the following strings correctly represents the 4th month of the (Gregorian) calendar year: A, April,

APR, Apr, 4, or 04? The answer? All of them. Already, working with dates and times seems a bit complicated, doesn’t

it? In fact, we did a quick perusal of all the Java reference books in our office (not insubstantial) and very few cover

dates and times in any substantial way. But don’t panic. Just accept the fact that, as a developer, you will have to

expend a bit of effort towards satisfying two goals:

1. Your External Goal: To allow the user to work with the date and time formats they are most comfortable with, or at

least familiar with.

2. Your Internal Goal: To keep your application code format-independent, so it works everywhere with little hassle.

Now let’s talk a bit about each of these goals.

The External Goal: Be Flexible & Use Standard Controls

Have you ever noticed that few travel websites let the user manually enter date or time information? Instead, they rely

upon calendar pickers and fixed day, month and year dropdowns, or, at minimum, enforce a specific date format

(usually tied to your language/country, which they ask for in advance). From a user interface perspective, your apps

should honor date and time nuances, at least to some extent. However, you should also carefully consider the

methods in which the user can enter date and time information. By using standard date and time pickers in your

Android apps, such as DatePicker and TimePicker, you effectively limit the data users can input to that which can be

easily converted into appropriate date and time structures, without having to parse every known format (not to

mention its typos).

Preview from Notesale.co.uk

Page 62 of 72

 The Date class (java.util.Date) is a utility class for storing date and time in a way that can be reasonably

manipulated without having to constantly think about time in terms of milliseconds.

 The Calendar class (java.util.Calendar) is a utility class for working with different calendars, as well as for

manipulating date and time information in a variety of ways.

 The GregorianCalendar class (a subclass of java.util.Calendar) is used primarily for date manipulation in the

Western hemisphere, were we use a 12-month calendar, with 7 days to a week, and two eras (BC and AD).

Determining the Current Date and Time

There are a number of ways to determine the current time on an Android device.

You can determine the raw date and time data using the static method provided in the System class

(java.lang.System):

long msTime = System.currentTimeMillis();

Date curDateTime = new Date(msTime);

This method relies upon the time that the device thinks it is, which may or may not be reliable. Another way to

determine the current date and time uses the default constructor for the Date class, which creates a Date object with

the current date and time:

Date anotherCurDate = new Date();

There are yet other ways to determine the true exact time—computers frequently check known time-keeping servers

to make sure everyone is “in sync”. This process is slightly beyond the scope of this tutorial, but suffice to say, just

requesting and receiving the correct time takes some time, which must then be accounted for before synchronization

can really be achieved.

(Note: Android devices that connect to cellular services tend to have locale accurate date and time information as this

may be used in communications with the radio towers.)

Creating Date and Time Variables from Scratch

Preview from Notesale.co.uk

Page 64 of 72

