10. If x and y are of same sign, then the value of
$$\frac{x^3}{2} \operatorname{cosec}^3 \left(\frac{1}{2} \tan^{-1} \frac{x}{y}\right) + \frac{y^3}{2} \sec^4 \left(\frac{1}{2} \tan^{-1} \frac{y}{x}\right)$$
 is equal to $(A)(x - y)(x^2 + y^2)$ (B) $(x + y)(x^2 - y^2)$ (C) $(x + y)(x^2 + y^2)$ (D) $(x - y)(x^2 - y^2)$
11. For $f(x) = \tan^{-1} \left(\frac{(\sqrt{12} - 2) x^2}{x^4 + 2x^2 + 3}\right)$
(A) $f_{max} = \frac{\pi}{12}$ (B) $f_{min} = 0$ (C) f_{min} does not exist (D) $f_{max} = \frac{\pi}{2}$
12. If $f(x) = \begin{cases} x + 1, x \le 0 \\ 2 - x, x > 0 \end{cases}$ and $g(x) = \begin{cases} x^2 + 1, x \ge 1 \\ 2x - 3, x < 1 \end{cases}$ then
(A) Range of gof (x) is $(-\infty, -1) \cup [2, 5]$ (B) Range of gof (x) is $(-\infty, -1) \cup [2, 5)$ (C) $gof (x)$ is many one for $x < [0, 1]$
13. If f(x) is identity function, g(x) is absolute value function and h(x) is reciprocal function then
(A) rigoph(y) = hogof(x) (D) hohohoh(x) = f(x)
14. The function $y = \frac{x}{1 + \frac{1}{1}}$; $R \rightarrow R$ is
(A) one-one (B) onto (C) odd (D) into
15. If α, β, γ are roots of equation $\tan^{-1} (|x^2 + 2x| + |x + 3| - ||x^2 + 2x| - |x + 3||) + \cot^{-1} \left(-\frac{1}{2}\right) = \pi$ in
ascending order ($\alpha < \beta < \gamma$) then
(A) sin^-1y is defined
(C) $\gamma - \beta = \sqrt{2}$ (D) $|\beta| > |\gamma|$
16. If (x) and $g(x)$ are two polynomials such that the therefore $x(x) + x^2g(x^0)$ is divisible by
 $x^2 + x + 1$, then
(A) sin^{-1}a + cos^{-1}a = \frac{\pi}{2} (B) $2\sin^{-1}a + \cos^{-1}a = \frac{\pi}{2}$ (C) $\sin^{-1}a + 3\cos^{-1}a = \frac{3\pi}{2}$ (D) $|an^{-1}a + \cos^{-1}a = \frac{\pi}{2}$
17. I $+ \sin^{-1}x^2 + 2 = \frac{1}{2} + \frac$

