- This chemical reaction must be shielded from water to keep the phosphate from being cleaved off ATP by a water molecule
- Hexokinase performs an induced fit, closing around ATP and glucose once they are bound

- Reaction 2 Conversion of glucose-6-phosphate → fructose-6-phosphate
 - Isomerization A reaction that changes the shape of a single molecule but doesn't permanently add or remove any atoms
 - o Isomer Same number of atoms, different arrangement
 - Fructose has a 5 atom ring structure, glucose has 6 at m ring
 - No atoms gained/lost
- Reaction 3 Phosphorylation of fructos Prosphate → fructose-1,6-bisphosphate (F-1,6-BP)*** FXA N (F-5)***
 - Pi from ATP transfer led to sugar → F4, 4-) P
 - Riph sphate molecules (t) athed to two different points (1st and 6th carbons)

Phosphoft Cool 123 -1 (PFK1) is the gatekeeper of glycolysis → Catalyses the committed step of the glycolytic pathway

- PFK1 proposed to have important roles in metabolic reprogramming in cancer
- Somatic cancer mutations of PFK alter enzymatic activity and allosteric regulation
- Regulated allosterically
- PFK1 is a bacterial enzyme with 4 identical subunits. The active site binds to the sugar and ATP. The enzyme also has regulatory binding sites at the top and bottom

- Reaction 4 Cleavage of fructose-1,6-biphosphate (F-1,6-BP)
 - Aldolase splits sugar into two 3 carbon molecules
 - Dihydroxyacetone phosphate
 - Glyceraldehyde 3-phosphate
- Reaction 5 Interconversion of the triose phosphates
 - Triose phosphate isomerase (enzyme) rearranges atoms of dihydroxyacetone phosphate into glyceraldehyde 3-phosphate (end up with 2 equivalents of glyceraldehyde 3-phosphate)
 - o The TIM barrel (structure that occurs widely in nature) is a conserved protein fold of triose phosphate isomerase. The TIM barrel consists of eight alpha-helices and eight parallel beta-strands that alternate along the peptide backbone
- Reaction 6 Oxidation of glyceraldehyde-3-phosphate (G-3-P) to 1,3bisphosphoglycerate (1,3-BPG)
 - Glyceraldehyde 3-phosphate dehydrogenase attaches an inorganic phosphate to glyceraldehyde 3-phosphate → 1,3biphosphoglycerate
 - NAD+ is a cofactor here
 - NADH produced is often called a reducing equivalent and is used in the TCA cycle
 - Electrons passed to NAD+ to produce NADH
 - o NAD+ must be regenerated
- Reaction 7 Phosphoryl transfer from 1,3-biphosphoglyc na e (1,5-BPG)
 to ADP → PAYOFF PHASE (Produces ATP)
 - Phosphoglycerate kinase (enzyme) are one molecule ADP to produce 3-phosphoglycerate - ATP
 - o Reversible (e.g.) (Important in glucoi etgenesis)
 - Product: ATP from ADPA
 - 1 gl/cose molecule 2 equivalents 1,3-bisphosphoglycerate (therefor 2 gl/cose \rightarrow 2 ATP)
- Reaction 8 Conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate
 - Phosphoglycerate mutase (enzyme) isomerases 3phosphoglycerate to 2-phosphoglycerate (phosphate moves carbons)
 - Isomerization reaction
- Reaction 9 Dehydration of 2phosphoglycerate to phosphoenolypyruvate (PEP)
 - Enolase strips H20 molecule from 2-phosphoglycerate → phosphoenolypyruvate
 - Phosphoenolpyruvate now has double bond
- Reaction 10 Transfer of phosphoryl group from phosphoenolpyruvate (PEP) to ADP → PAYOFF STEP
 - Pyruvate kinase uses ADP to produce pyruvate + ATP

- Decrease in translocation of H+
- Collapse of proton motive force
 - ATP synthase can potentially operate in reverse
 - Can hydrolyse ATP under hypoxic conditions (dangerous if you need to conserve ATP)
- Hydrolysis of ATP by ATP synthase is prevented by a small protein inhibitor (IF1)
 - o Inhibitor of the F1 subunit (catalytic subunit of ATP synthase)
 - Simultaneously binds 2 synthase molecules together inhibiting their activity
 - o Only active as a dimer at lower pH (high H+)
 - When cell relies upon glycolysis for ATP, concentrations of pyruvic and lactic acid increase

Hypoxia leads to ROS production (reactive oxygen species)

- In hypoxic conditions there is an imbalance between electron supply and transfer to 02
 - o Leads to an increase in ROS (reactive oxygen species), particularly 02. (which carries an unpaired electron and is therefore a radical)
 - o Production of O2 is related to the concentration of potential electron donors, the local concentration of O2
- Regulation via hypoxia inducible transcription factor 1 (HIF1)

 Regulation of PDH via PDH-kinase

 HIF-1 increases synthesis of PDH loads Phosphorylation of RDH - Pactive
 - Regulates entry in b 12 during hypothe
- Regulation of complet IV (cytochrome oxidase) Slov's N.D.H and FADH2 product of slowing supply of

- HE are ses synthesis of a protease that degrades a subunit of complex IV (COX4-1)
- Triggers synthesis of alternate subunit (COX4-2) which is specifically suited to hypoxic conditions
- Also up-regulates glucose transporters and glycolytic enzymes

Summary

- BE ABLE TO DRAW GLUCOSE, G6P, PYRUVATE AND LACTIC ACID
- PDH complex regulated allosterically and by phosphorylation
- Products of the TCA cycle (NADH and ATP) affect all regulated enzymes in the cycle
- Coupling can be observed using an oxygen electrode and by measuring ATP production
- Oxidative phosphorylation can be uncoupled in vitro by various uncoupling reagents and in vivo by uncoupling proteins
- Uncoupling protein 1 (UCP1) is found in some animals, human infants
- In hypoxia there is an imbalance between electron supply and transfer to O2 leading to ROS production

- Pyruvate
- Lactate
- Certain amino acids
- Glycerol → Dihydroxyacetone phosphate (intermediate of TCA)
 - o Both 3C compounds

Lactate

- Result of glycolysis in erythrocytes and anaerobic muscle during vigorous exercise
- NADH produced by lactate dehydrogenase in the cytosol (recycling NADH)
- Allows us to cycle glucose to lactate and the lactate can be converted back to glucose in the liver (the glucose can re-enter the blood stream and be taken up by working muscle)
- The cori cycle
 - Lactate carried in the blood to the liver where it is converted back to glucose during recovery from strenuous exercise

Amino acids

- Sources for gluconeogenesis include AA and glycerol from FA (can be converted into glucose)
- Some AA give rise to pyruvate which can be used in gluconeogene ii (used to generate glucose)
- Glucogenic and ketogenic amino acids depending a where they enter gluconeogenesis
- Alpha-ketoglutarate, succin (1 Co.) and fumarate (r) all citric acid cycle intermediates and give rise to oxaloace tate
 - Ar Pic acids can feed into the TCA cycle at more than one point
 We can't make not convert uses of acetyl CoA into glucose → It can feed
 into Krebs cycle out ar order to incorporate acetyl CoA into the cycle we
 require a molecule of oxaloacetate

 → Lose 2 carbon equivalents so no net
 glucose
 - Some plants by pass the loss of CO2 equivalents and can there for use acetyl CoA to make glucose
 - In starvation we cannot use the FA to make glucose (Cant make acetyl CoA into glucose)

Precursors of gluconeogenesis

- Beta oxidation of fatty acids gives rise to acetyl CoA (cannot make net glucose from Acetyl CoA, but pyruvate we can via gluconeogenesis)
- Pyruvate resulting from glycolysis can be converted to acetyl CoA by pyruvate dehydrogenase reaction (irreversible)
 - o Once at acetyl CoA it is irreversible

Glycerol

 Glycerol resulting from the hydrolysis of triacylglycerols can be used in gluconeogenesis

- F26BP not a glycolytic intermediate but is essential for regulation
- A regulator specifically produced to regulate glycolysis and gluconeogenesis
- Levels of F26BP important for regulating glycolysis
 - Inhibit FBPase-1
 - Upregulates PFK1
- F26BP is synthesised from F6P by PFK-2
- Broken down by fructose-2,6-bisphosphate (FBPase-2)

Regulation by F26BP

- Has opposite regulatory effects on glycolysis and gluconeogenesis
- F26BP allosterically regulates fructose-1,6-bisphosphatase in a similar manner
 - Activates phosphofructokinase (glycolysis)
 - Inhibits fructose-1,6-bisphosphatase (gluconeogenesis)
- When F26BP binds to its allosteric site on FBPase-1
 - Decreases the enzymes affinity for F6P
 - o Inhibited by as little as 1uM F26BP
 - o Increases FBPase-1 sensitivity to AMP
- When F26BP binds to its allosteric site on PFK-1
 - Increases the enzymes affinity for F6P
 - Decreases the enzymes affinity for ATP

Regulation of F26BP levels

- sale.co.uk PFK2 and FBPase-2 are enzymes of the large protein
 - o Make the same non all colytic intermediate 120 BP
- High BG → Insulin binds to cell surface → Te phosphorylation → Activates $FXA \rightarrow F26BP \rightarrow Active C PFK-1 \rightarrow Glycolysis$
- \rightarrow Let G (want to shot do G lycolysis) \rightarrow Glucagon \rightarrow Signalling cascade resulting in phosphocylation of cAMP \rightarrow FBPase-2
 - Increased F26BP stimulates glycolysis inhibits glucongeogenesis
- Decreased F26BP inhibits glycolysis and stimulates gluconeogenesis

Summary

- Gluconeogenesis is the synthesis of glucose from non-carbohydrate precursors
 - o Pyruvate, lactate, amino acids and glycerol (but not fatty acids in animals)
- Gluconeogenesis and glycolysis share 7 common steps, but not those that are irreversible
 - Hexokinase (step 1)
 - PFK-1 (step 3)
 - Pyruvate kinase (step 10)
 - These reactions are bypassed by 4 different enzymes
 - Pyruvate carboxylase
 - PEP carboxykinase
 - Glucose-6-phosphatase
 - Frcutose-1,6-bisphosphatase

- When BG levels are high insulin stimulates glycogen synthesis by inactivation of glycogen synthase kinase 3
- Glycogen synthase kinase phosphorylates glycogen synthase (inactive)
- Phosphatase activates glycogen synthase
- Inactivation of glycogen synthase kinase allows PP1 to dephosphorylate and activate glycogen synthase

Phosphoprotein phosphatase 1 is central to glycogen metabolism

- PP1 can remove phosphoryl groups from all three enzymes phosphorylated in response to glucagon/epinephrine
 - Phosphorylase kinase
 - Glycogen phosphorylase
 - Glycogen synthase
- PP1 Is tightly bound to its targets via glycogen targeting protein (Gm)
 - o Binds glycogen and above 3 enzymes
- PP1 is itself subject to covalent and allosteric regulation

These allosteric and hormonal signals coordinate carbohydrate metabolism globally

Summary

- Glycogen is a polymer of alpha (1-4) linked subunits of glucose with alpha (1-6) linked branches constructed around a core prime based on the enzyme glycogenin
- Glucose 6 phosphate is converted to a to 5 1-phosphate by phosphoglucomutase (reversibly), before activation via the addition of a nucleotide, forming VI P glucose the building block of glycogen
- Glycogen of a king and debranching enzymes are responsible for for hing and degrading in hodelling the alpha (1-6) linked branches. Epinephrine and glucagen induce glycogen breakdown (via phosphorylase kinase which phosphorylates/activates phosphorylase) and impair glycogen synthesis (via phosphorylating/inactivating glycogen synthase)
- Insulin and the availability of glucose induces glycogen synthesis, with phosphoprotein phosphatase 1 (PP1) dephosphorylating/activating glycogen synthase, and dephosphorylating/inactivating phosphorylase

Type I diabetes

- Results from the autoimmune destruction of the insulin producing beta cells in the pancreas
 - Cells destroyed by autoimmune processes
 - o Glucose metabolism limited
- Manifests itself in childhood (juvenile diabetes)
- Metabolism of glucose is limited by the rate of uptake; glucose uptake is deficient in type I diabetes
- Classical symptoms
 - Polyuria (frequent urination)
 - Polydipsia (increased thirst)

- Polyphagia (increased hunger)
- Weight loss
- BG builds up to high levels \rightarrow Increased urination \rightarrow Increased thirst
- Cells unable to take up glucose → Increased hunger

Glucose uptake

- Mediated by GLUT transporters
- In some cells GLUT transporters are always present
 - GLUT1 (ubiquitous; in all cell types)
 - GLUT2 (liver)
 - GLUT3 (brain)
 - Always expressed → Brain reliant on glucose as an energy source
 - Other transporters are regulated
- In skeletal muscle, cardiac muscle and adipose tissue, GLUT4 is sequestered in vesicles and moves to the plasma membrane in response to insulin
 - o Recruited into membrane under insulin signal

Effects of type I diabetes on CHO and fat metabolism

- Pancreas fails to secrete insulin
- Insulin receptor not activated
- Failure to recruit GLUT4 transporters in membrane (in sleep muscle, cardiac muscle and adipose tissue)
- Glucose not taken up by cells
- Insufficient glycolysis (duc to insufficient glucgse)
- Insufficient TCA cycle and oxidative phospi orylation
- Triglycer of the akdown and father acid oxidation

Inborn errors of metabousis.

- Rare genetic disorders that affect enzymes in metabolism
- Gene mutations → Individual enzymes affected
- Body cannot properly turn food into energy (enzymes defective)
- Usually caused by defects in specific proteins (enzymes) that help break down (metabolise) parts of food

Glycolysis in disease

- Glycolytic mutations are relatively rare due to importance of this pathway (produces pyruvate for TCA and precursors for other biosynthetic pathways)
- Majority of mutations in enzymes \rightarrow Cells cant respire \rightarrow Cell death

Pyruvate kinase deficiency

- Final step of glycolysis (phosphoenolpyruvate + ADP → Pyruvate + ATP)
- Erythrocytes (RBCs) obtain all their ATP from glycolysis
- A deficiency in pyruvate kinase (PK) results in erythrocytes with decreased energy

During reperfusion succinate is consumed \rightarrow Too much QH2 produced \rightarrow Drives reverse electron transport at complex I → Drives ROS production at complex I → Cell damage

Summary

- Type I diabetes results from inability to produce insulin
- Type I diabetes impacts on glucose uptake by skeletal, cardiac, muscle and fat cells
- Inborn errors in glycolytic enzymes are rare but found
- Mitochondrial diseases are a group of diseases resulting from mutation of proteins important in electron transport and other processes in the mitochondria
 - Leber's hereditary optic neuropathy
 - Leigh syndrome
 - MERRF sundrome
- Other inborn errors in metabolism include fructose bisphosphate deficiency and glycogen storage diseases
- At high altitude, O2 deficiency can lead to increased HR, brain swelling, leakage of blood vessels of alveolar sacs of lung and death
- HR leads to O2 deficiency, rapid depletion of ATP and energy stores and ale.co.uk breakdown in osmotic balance of cells

Pentose phosphate pathway

- Produces NADPH and ribose-5-phosphate
 - o NADPH similar in chemical project reducing power)
 - NADH occurs in a ridative and encurs olism, NADPH electron con i h biosynthesis
- Real ed for reducing rows, and nucleotide precursors NADPH is an electron denor
 - Reductive biosynthesis of fatty acids and steroids
 - Repair of oxidative damage
- Ribose-5-phosphate is a biosynthetic precursor of nucleotides
 - Used in DNA and RNA synthesis
 - Used in synthesis of some coenzymes (eg Coenzyme A)
 - We need ribose to make NAD and NADP (cofactors)
 - o Ribose at the heart of ATP
 - o Ribose linked to phosphates and base in RNA
 - Ribose in RNA has an extra OH at C2
 - Deoxyribose in DNA does not → Increased flexibility

NADPH vs. NADH

- Both have nicotinamide
- Difference is the presence of a phosphate group in NADPH
- Both dinucleotide molecules are able to act as electron donors; they act as cofactors in many biochemical reactions
- NADPH is especially important for reactions involving reduction; the pentose phosphate pathway is the major source of NADPH

- NADPH oxidised to NADP+
- NADH oxidised to NAD+
- NADH involved in glycolysis, TCA
- NADPH used in biosynthetic pathways and protection from oxidation
- Major source of NADPH is the PPP

Four major pathways of glucose utilisation

- Glucose can be oxidised via pentose phosphate pathway \rightarrow Ribose-5phosphate
- Glycolysis (glucose oxidised → pyruvate)
- Glucose stored as glycogen

Glycolysis

- Mutations in glycolytic enzymes rare as glycolysis is central
- The intermediates are required for the biosynthesis of several important compounds
- Step 1 Glucose \rightarrow G6P
 - o G6P intermediate can enter the PPP → Ribose-5-phosphate
- Step 3 F6P \rightarrow F16BP (via PFK1)
- Step 10 PEP → Pyruvate

Pentose phosphate pathway

- Oxidative and non-oxidative phases
- le.co.uk • G6P can be oxidised to 6-phosphogluconolas and wa glucose-6phosphate dehydrogenase) and (ADP) is reduced to NADPH
- 6-phosphogluconolactore 71 -phosphoglucomit (v2) 6phosphogluconpla it mase)
- The NADE is used by glutathicker ductase to protect cells from
- o. wallve damage in (e) 0.27 reactions (GSSG \rightarrow 2GSH)
 - 6-phosphoglucol ate de-carboxylated (loss of CO2) to ribulose-5phosphate (via 6-phosphogluconate dehydrogenase) and another NADPH equivalent produced
- Ribulose-5-phosphate → Ribose-5-phosphate (via ribulose-5-phosphate isomerase)
- Ribose-5-phosphate → Nucleotides, coenzymes, RNA, DNA

What is the NADPH used for?

In cells that are directly exposed to 02 (lens, cornea, erythrocytes), the NADPH generated by the PPP creates a reducing environment that protects these tissues from free radicals

Glutathione and the PPP

- Glutathione is a tri-peptide consisting of glutamate, cysteine and glycine
- Gutamate joined to cysteine via its side chain
- Cysteine contains SH and is linked to glycine
- NADPH produced by the PPP allows oxidised glutathione to be regenerated to its reduced form (GSH)

- Primaquine and compounds found in fava beans lead to increased amounts of peroxides and other reactive oxygen species (cause oxidative damage)
- If people with G6PD deficiency eat fava beans \rightarrow Deficient in G6P dehydrogenase \rightarrow Not enough NADPH \rightarrow Oxidative stress \rightarrow Hydroxyl radicals
 - Erythrocytes lyse
 - Haemoglobin is released into the blood
 - o Iaundice and kidney failure can result
- G6PD deficiency impairs the ability of red blood cells to maintain their levels of reduced glutathione and therefore their ability to deal with oxidative stress

What happens in the erythrocytes?

- Hemoglobin (Fe2+) → oxidation → Methaemoglobin (Fe3+)
 - o In order to carry 02, the heme iron must be 2+
 - Methaemoglobin cannot carry oxygen
 - If we are able to make NADPH we can reduce Fe3+ to Fe2+
- Methaemoglobin signifies damage, cells destroyed

Summary

- The PPP is a process by which cells can generate reducing power (NADPH) that is needed for
 The biosynthesis of various compounds
 Reduction of oxidised glutathion

 - Reduction of oxidised glutathical
- Produces ribose-5-phosphate
- The non-oxidative of a e of the PPP can convert pentose phosphates back to G6P and other glycolytic intermediates
- A partiency in the first cale one in the pathway (glucose 6 phosphate denydrogenase) cace te decreased amount of reduced glutathione, and increased susceptibility to oxidative damage, particularly in erythrocytes (red blood cells)

Revision

- GSH (glutathione)
 - o Gamma-glutamate + cysteine + glycine
 - SH group from cysteine
- Peroxidase reaction (H2O2 (hydrogen peroxide) → H2O) via the reducing power of glutathione
 - $H202 + H + + 2e \rightarrow 2H20$
- Glutathione S-transferase takes glutathione and conjugates it to various toxins with nucleophilic centres
 - o By conjugating a toxic molecule to glutathione it becomes more soluble and the body can then remove compounds conjugated to glutathione from the cell

Nitrogen metabolism: Amino acids

- Roles of amino acids
 - Energy production

- High fat/protein diet thought to reduce appetite and overall consumption
- Metabolism is similar to fasting but following result
 - Decreased glucose
 - o Increased ketones (secreted in breath and urine → net calorie loss)
 - o Increased serum lipids
 - o Increased NH4+ (hyperammonia)
- Potential health risks
 - Hypoglycaemia causing neural effects
 - Ketoacidosis causing acidification of blood
 - High serum lipids causing heart disease
 - Increased ammonia causing liver damage

Revision

- AA can be classified as 2 groups in AA degradation
 - o Ketogenic AA
 - Glucogenic AA
- Most AA do not directly enter into the TCA cycle
- The enzyme defective in phenylketonuria (PKU) is phenylalanine hydroxylase
- The main storage site of protein in the body is muscle
- sale.co.uk A key problem of starvation diets is muscle protein loss
- 4 key problems with high protein diets
 - o Decreased glucose (hypoglycaemia)
 - o Increased NH4+
 - o Increased ketone boths (ke
 - Hyperlipid n (a Gerum lipids)

IKCULATING I

Lipids have important firections

- Provide energy source
- Insulation
- o Reserves of FA which can be released and used as an energy source
- Energy storage
- o Phospholipids/glycolipids important in cell membranes
- o Glycolipids also involved in trafficking cells around the body (eg blood cells)
- Main lipids
 - o Fatty acids
 - o Triacylglycerols
 - Phospholipids
 - o Glycolipids
 - Lipid hormones (vitamins etc)
 - o Pigments

Lipids revision Triacylglycerol

Glycerol backbone

- Genetic disorder
- Absence or deficiency in LDL receptors
- Macrophages engulf LDLs and swell to form foam cells (rich in fat) \rightarrow Form cholesterol plaques which block blood vessels
- 4 fold higher plasma cholesterol and LDL concentrations
- Excess blood LDL is oxidised and engulfed by macrophages to form foam cells and atherosclerotic plaques in blood vessels
- Homozygotes (both genes affected) die of coronary heart disease in childhood unless treated by liver transplant
- Heterozygotes treated using drugs (statins) which reduce blood cholesterol (via inhibition of HMG-CoA reductase) which in turn upregulates LDL receptors

The body contains different adipose tissue

- White adipose tissue (predominant)
 - o Storage of excess calories as TAGs which can be used as fuel (via beta oxidation) to produce ATP (fuel reserve)
 - o Prevention of toxic amounts of excess nutrients in non-adipose tissues
- Brown adipose tissue
 - Storage of TAGs, which are used as fuel (via beta oxidation)
 - Lipoproteins are particles of apolipoproteins and floro

 4 types of lipoproteits

 Chapter ons

 Lib.

Revision

VLDL

- Function of apolipoproteins \rightarrow Solubilise lipids, cell targeting, enzyme activation
- Excess of LDL is associated with CV disease
- HDL removes excess cholesterol
- Receptor mediated endocytosis is the process by which LDLs are taken up by cells
- Drugs used to reduce blood cholesterol are known as statins
- Two main types of adipose tissue
 - White adipose tissue \rightarrow Stores TAGs for beta oxidation \rightarrow ATP
 - o Brown adipose tissue → Thermogenesis (regulate body temperature)

Lipid and FA degradation

- **TAGs**
 - Glycerol backbone
 - o 3 FA chains (Acyl chains)

Formation of ketone bodies from Acetyl-CoA

- Fatty acid derived acetyl CoA enters either the citric acid cycle or forms ketone bodies
- Ketone bodies → Acetoacetate, D-beta-hydroxybutyrate, acetone
- Acetoacetate and D-beta-hydroxybutyrate are used as an energy source by tissues under normal conditions or during starvation
- Ketone body production is low in health, well nourished individuals
- Ketone body production increases during starvation or in diabetes mellitus
- Ketone body production occurs mainly in the liver due to high levels of **HMG-CoA** synthase
- D-Beta-hydrobutyrate and acetoacetate become a source of acetyl CoA in extra hepatic tissues

Ketone body formation and export from the liver

- FA → Acetyl CoA (via beta oxidation)
- Some acetyl CoA → Ketone bodies
- Acetoacetate and D-beta-hydroxybutyrate exported as energy source for heart, skeletal muscle, kidney, brain
- Starvation/diabetes → Depletion of TCA intermediates (cannot function)
- Increase in ketone body formation \rightarrow High blood and urine ketone body levels (ketosis) leads to acidosis, coma and death

Revision

- esale.co.i Beta oxidation of unsaturated FA teps involving isomerases and reductase
- Complete beta exittation of odd chain fact icids requires three additional
- il efinal productorising the complete beta-oxidation of unsaturated FA is succinyl coll and the vitamin cofactor involved is vitamin B12
 - Acetone, acetoacetate and D-beta-hydroxybutyrate are types of Ketone bodies
 - Ketone body production occurs mainly in the liver due to high levels of **HMG-CoA** synthase
- Two health conditions associated with increased ketone body formation is starvation and diabetes mellitus
- Increase ketone body formation during starvation/diabetes because increased gluconeogenesis → Depletes TCA cycle intermediates → Prevent FA derived acetyl CoA from TCA cycle entry

TAGs

- Form main dietary lipid and storage lipid
- Glycerol backbone + 3FA chains

Fatty acid degradation

- TAGs \rightarrow Glycerol and FA (in response to hormones \rightarrow HSL)
- Glycerol → Gluconeogenesis/glycolysis

Polar molecule

Cholesterol synthesis

- Acetyl CoA \rightarrow Mevalonate \rightarrow Isoprene \rightarrow Squalene \rightarrow Cholesterol
- HMG CoA synthase (Ketone body formation; acts on acetyl CoA to produce B-hydroxy which forms ketones)
- HMG CoA reductase (statins)

HMG-CoA reductase is the essential control point in cholesterol synthesis

- HMG-CoA also in ketone body formation
- HMG-CoA reductase is the target of cholesterol lowing compounds (drugs) called statins (eg lovastatin)

Cholesterol and related sterol synthesis

- From squalene other sterols are synthesised (stigmasterol and ergosterol)
- Squalene may act as an anti-oxidant or anti-cancer agent by increasing immunity

Cholesterol has several fates

- Bile acids (Used to solubilise TAGs in the gut so they can be digested by pancreatic lipases)
- Hydroxysterols (Roles in neuronal function)
- Cholesteryl ester (cholesterol + FA; useful war of tansporting cholesterol around the body)
- Steroid hormones (pregn

sported within lipoproteins

Bile salts originate from cholesterol

- Bile acids are derived from cholesterol in the liver
- Bile salts are comprised of bile acids (such as ionised cholic acid)
- Bile salts emulsify fats in the intestine, causing their digestion and absorption

Steroid hormones

- Sterol derivatives
- Lack alkyl chain attached to fourth (D) ring
- More polar than cholesterol which allows them to travel through the bloodstream on protein carriers
- Bind to highly specific receptors to induce changes in gene expression and metabolism (work through both cell surface and nuclear receptors)
- Give rise to
 - Sex hormones (testosterone, estradiol)
 - o Hormones which regulate metabolism or salt secretion (cortisol, aldosterone)

Many energy carriers are derived from B group vitamins

- B2 (riboflavin) \rightarrow FAD
- B3 (Niacin) → NADH, NADPH
- B5 (pantothenic acid) → Coenzyme A

Vitamin A

- Derived from beta carotene, which is formed from isoprene subunits
- Functions
 - o Visual pigment in the vertebrate eye
 - o Regulates gene expression in epithelial cells
- Deficiency results in
 - Night blindness
 - o Cornea damage
 - o Respiratory tract damage
 - o GI damage

Vitamin A metabolism

- Beta carotene is cleaved → Vitamin A (retinol) → 11-cis-retinal
- 11-cis retinal (beta carotene derivative) may bind with opsin to form rhodopsin, a light sensitive receptor (responds to light)
- Visible light converts 11-cis-retinal to all-trans-retinal (a neuronal signal to the brain)
- 11-cis-retinal contains retinoic acid, a hormonal signal to withelfal cells

11-cis-retinal binds with opsin to form the donate

- Rhodopsin is present in that do one cells of the fatin
- 11-cis-retinal is a light shing pigment (promophore)
- 11-cis ret cal tovalently binds a sill to form rhodopsin
- Rhodopsin undergoes à shape change sending a signal

Vitamin D synthesis

- 7-dehydrocholesterol, formed from cholesterol, is converted to biologically inactive vitamin D3 in the skin by sunlight (Via UV light)
- Vitamin D3 is converted to biologically active 1-alpha-25dihydroxyvitamin D3 in the liver then kidney
- 7 dehydrocholesterol → UV light (2 step process in the skin) → Cholecalciferol (Vitamin D3) → 2 step process (1 in the liver, 1 in the kidney) → 1alpha,25-Dihydroxyvitamin D3 (calcitriol)

Vitamin D and bone metabolism

- 1,25-dihydroxyvitamin D3 regulates calcium and phosphate metabolism to promote bone metabolism
- 1,25-dihydroxyvitamin D3 deficiency impairs bone mineralisation leading to bone disease (rickets and osteomalacia)

Vitamin D deficiency

• Due to poor dietary intake and/or reduced sun exposure

- RNA/DNA when nucleic acid
- Ribonucleotides have the ribose sugar, deoxyribonucleotides if they do not have the sugar

Pyrimidine nomenclature

- Cytosine
- Nucleoside (sugar + base) \rightarrow Cytidine
- Nucleotide → Cytidylate

Roles of nucleotides

- Transfer of energy (ATP, GTP)
- Regulation of cellular metabolism (AMP levels)
- Components of major coenzymes (NAD+, FAD)
- Storage and transfer of genetic information
 - Activated precursors of DNA and RNA
- Signal transduction in cells, second messengers
 - Cyclic AMP, cyclic GMP mediates hormonal actions
- Extracellular signalling molecules
 - o Extracellular ligands for receptors
 - Adenosine is a neurotransmitter

Transfer of energy (ATP)

- ATP provides energy for many reactions
 - Synthesis of macromolecules
- sale.co.uk Active transport of molecules atContraction of musche tells membranes
- Works by coupling an unavourable read energy release from ATP hydrolysi
- Teanation of every the ATP generally involves the covalent participation of ATP in the reaction that is to be driven
- Most cases of energy transfer from ATP involve group transfer (phosphate groups moving)
- The covalent participation of ATP can be to form an activated intermediate
 - o Eg production of glutamine by ATP dependent glutamine synthetase
 - o Glutamate + ATP → Intermediate → Glutamine

Regulation of cellular metabolism (AMP)

- AMP concentration is a sensitive indicator of a cell's energetic state
 - When ATP is broken down, [AMP] increases
 - o Indicates energy use and that energy needs to be generated
- AMP activated protein kinase (AMP kinase)
 - o Most important mediator of regulation by AMP
 - o Responds to increased AMP concentrations (decreased ATP/AMP ratio) in response to decreased intake of nutrients by cell or increased use (exercise)
 - Activates or inhibits a range of metabolic processes

- o Ring stabilises it
- Two forms of chlorophyll depending on its sidechain, absorb light in slightly different regions
 - o Chlorophyll a (more common)
 - Chlorophyll b

Why are leaves green?

- Chlorophyll absorbs light in the blue and red regions of visible light
- Light in the green region is reflected

Accessory pigments

- Secondary light absorbing pigments are called carotenoids (Important so you can absorb as much light as possible)
- The two most important are
 - o Beta carotene (red-orange)
 - Lutein (yellow)
- These pigments absorb light at wavelengths not absorbed by chlorophyll and thus serve as supplementary light receptors
- Different proportions of these pigments give plant species their characteristic colour

Light harvesting complexes (LHCs)

- Specific proteins fix the position of light harvesting pigment. Decules into membrane (carotenoids and chlorophyll
- Embedded in the thylakoid membrane

Light harvesting (Photosyster's) and II)

- The light as Wing pigments a Garranged in arrays called photosystems the are embedded in the treatment amount of the control of the control
- Excitation energy (exerce) from absorbed photons is transferred between antenna chlorophylls to a reaction centre
- Excited state transfers randomly from one chlorophyll to another til it reaches reaction sensor

Exciton and electron transfer

- All pigment molecules can absorb photons but only specialised chlorophyll molecules associated with the photochemical reaction centre can transduce light into chemical energy (the others pass it on)
- Photon of visible light used to push electron to outer orbital
- Antenna chlorophylls (bound to protein), carotenoids and other accessory pigments absorb light energy, transferring it between molecules until it reaches the reaction centre
- A photochemical reaction occurs in the reaction centre that converts the energy of a photon into a separation of charge, initiating electron flow (starts electron transport chain)
- Photon pushes electron to outer orbital which makes it a good electron donor (this is how it can pass it on to electron acceptor which is then reduced)