# C2 notes

### Algebraic and Functions

#### Factor Theorem

- Show that x 1 is a factor of  $2x^3 3x^2 x + 2$ 
  - o Reaarange x 1 to find x, x = 1
  - Sub x into the equation  $[2(1)^3 3(1)^2 1 + 2]$
  - o If equation equals to 0 then x 1 is a factor
  - $\circ$   $[2(1)^3 3(1)^2 1 + 2] = 0 : x 1 is a factor$

#### Long Division

- Find the solutions of  $2x^3 3x^2 x + 2$ 
  - o x-1 is a factor  $\therefore$  divide equation by x-1



- Divide the highest term in the equation  $(2x^3)$  by the highest term in the factor (x)
- Multiply in a swer  $(2x^2)$  the factor
- Subtract the answer from the 2 highest term in the equation ( $[2x^3 3x^2] [2x^3 2x^3]$
- The highest terms should cancel out
- Bring down the next term
- Repeat steps from the start until you are left with a remainder or 0
- o  $2x^3 3x^2 x + 2$  dived by x 1 has 0 has a remainder so x 1 is one of the solutions of the equation, the other 2 can be found by factorising the quadratic equation got from long division  $(2x^2 x 2)$ )
- $\circ$  Solutions are  $\frac{1+\sqrt{17}}{4}$  ,  $\frac{1-\sqrt{17}}{4}$  and x-1 using the quadratic formula  $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ 
  - If the equation has missing terms for example  $3x^4 2x^2 + 4$ , simply rewrite and put 0 for the co-efficient of the missing x terms and use long division to find solutions; so  $3x^4 2x^2 + 4 = 3x^4 0x^3 + 2x^2 + 0x + 4$

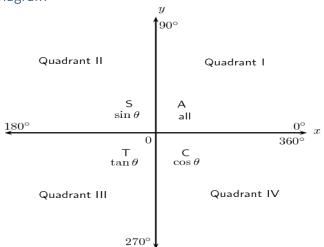
#### Exponentials

• Exponential functions :  $y = a^x$ 



- $Area = \frac{142}{360} \times \pi 6^2 = 44.6cm^2$
- $Perimeter = \left(\frac{142}{360} \times 2\pi6\right) + (6+6) = 14.9 + 12 = 26.9cm$
- $\circ$  Find the area of the minor segment (shaded below), giving your answer to 1 dp




- Area of sector Area of triangle = Area of segment
- Area of sector =  $\frac{70}{360} \times \pi 5.3^2 = 17.2 cm^2$
- Area of triangle =  $\frac{1}{2}$  (5.3 × 5.3) sin 1.2 = 13.2cm<sup>2</sup>
- Area of segment =  $17.2 13.2 = 4.0 cm^2$
- o Find the area of the major segment(shown below), giving your answer to 1 dp.



- Area of major segment = Area of circle Area of minor segment
- Area of circle =  $\pi 3.8^2 = 45.36cm^2$
- Area of minor segment = Area of sector Area of triangle
- Area of sector =  $\frac{1.2}{2\pi} \times \pi 3.8^2 = 8.00$ cm
- Area of triangle  $(3.8 \pm 5.8) \sin 1.2^{\circ} = 6.72 cm^2$
- Area of in new segment =  $2.66 \, \text{m}^2 6.72 \, \text{cm}^2 = 1.94 \, \text{cm}^2$
- $Crta of major segment = 45.36cm^2 1.94cm^2 = 43.4cm^2$

## Trigon metry Equations

#### **CAST Diagram**



Quadrant 1 – All are positive, Quadrant 2 – Sine is positive, Quadrant 3 – Tangent is positive,
Quadrant 4 – Cosine is positive

#### General Solutions of Trigonometric Equations

• For  $\sin \theta = S$  (where |S| is  $\leq 1$ ), the general solution is