
Using Logical Operators 194
MySQL Functions 194
Accessing MySQL via phpMyAdmin 195

Windows Users 195
Mac OS X Users 195
Linux Users 195
Using phpMyAdmin 197

Test Your Knowledge: Questions 198

9. Mastering MySQL . 201
Database Design 201

Primary Keys: The Keys to Relational Databases 202
Normalization 203

First Normal Form 204
Second Normal Form 206
Third Normal Form 208
When Not to Use Normalization 210

Relationships 211
One-to-One 211
One-to-Many 212
Many-to-Many 212
Databases and Anonymity 214

Transactions 214
Transaction Storage Engines 215
Using BEGIN 216
Using COMMIT 216
Using ROLLBACK 216

Using EXPLAIN 217
Backing Up and Restoring 218

Using mysqldump 219
Creating a Backup File 220
Restoring from a Backup File 222
Dumping Data in CSV Format 222
Planning Your Backups 223

Test Your Knowledge: Questions 223

10. Accessing MySQL Using PHP . 225
Querying a MySQL Database with PHP 225

The Process 225
Creating a Login File 226
Connecting to MySQL 227

A Practical Example 232
The $_POST Array 234

Table of Contents | vii

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 9 of 528

We’d Like to Hear from You
Every example in this book has been tested on various platforms, but occasionally you
may encounter problems; for example, if you have a nonstandard installation or a dif-
ferent version of PHP, and so on. The information in this book has also been verified
at each step of the production process. However, mistakes and oversights can occur
and we will gratefully receive details of any you find, as well as any suggestions you
would like to make for future editions. You can contact the author and editors at:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596157135

There is also a companion website to this book available online at:

http://lpmj.net

where you can see all the examples with color-highlighted syntax. To comment or ask
technical questions about this book, send email to the following address, mentioning
its ISBN number (9780596157135):

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

xvi | Preface

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 18 of 528

example of SQL (which stands for “Structured Query Language”), a language designed
in the early 1970s and reminiscent of one of the oldest programming languages,
COBOL. It is well suited, however, to database queries, which is why it is still in use
after all this time.

It’s equally easy to look up data. Let’s assume that you have an email address for a user
and need to look up that person’s name. To do this, you could issue a MySQL query
such as:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of names that may be associated
with that email address in the database.

As you’d expect, there’s quite a bit more that you can do with MySQL than just simple
INSERT and SELECT commands. For example, you can join multiple tables according to
various criteria, ask for results in a variety of different orders, make partial matches
when you know only part of the string that you are searching for, return only the nth
result, and a lot more.

Using PHP, you can make all these calls directly to MySQL without having to run the
MySQL program yourself or use its command-line interface. This means you can save
the results in arrays for processing and perform multiple lookups, each dependent on
the results returned from earlier ones, to drill right down to the item of data you need.

For even more power, as you’ll see later, there are additional functions built right in to
MySQL that you can call up for common operations and extra speed.

Using JavaScript
The oldest of the three core technologies in this book, JavaScript, was created to enable
scripting access to all the elements of an HTML document. In other words, it provides
a means for dynamic user interaction such as checking email address validity in input
forms, displaying prompts such as “Did you really mean that?”, and so on (although it
cannot be relied upon for security) which should always be performed on the web
server.

Combined with CSS, JavaScript is the power behind dynamic web pages that change
in front of your eyes rather than when a new page is returned by the server.

However, JavaScript can also be tricky to use, due to some major differences among
the ways different browser designers have chosen to implement it. This mainly came
about when some manufacturers tried to put additional functionality into their brows-
ers at the expense of compatibility with their rivals.

Thankfully, the manufacturers have mostly now come to their senses and have realized
the need for full compatibility between each other, so web developers don’t have to
write multiexception code. But there remain millions of legacy browsers that will be in
use for a good many years to come. Luckily, there are solutions for the incompatibility

The Benefits of PHP, MySQL, and JavaScript | 7

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 27 of 528

LAMPP: Starting MySQL...
LAMPP started.

Ready. Apache and MySQL are running.

Now you are ready to test the setup. Type the following URL into your web browser’s
address bar:

http://localhost

You should now see the start page of XAMPP, containing some links to check the status
of the installed software and some small programming examples (see Figure 2-14).

Figure 2-14. XAMPP for Linux, installed and running

Working Remotely
If you have access to a web server already configured with PHP and MySQL, you can
always use that for your web development. But unless you have a high-speed connec-
tion, it is not always your best option. Developing locally allows you to test modifica-
tions with little or no upload delay.

26 | Chapter 2: Setting Up a Development Server

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 46 of 528

Understanding Variables
There’s a simple metaphor that will help you understand what PHP variables are all
about. Just think of them as little (or big) matchboxes! That’s right, matchboxes that
you’ve painted white and written names on.

String variables

Imagine you have a matchbox on which you have written the word username. You then
write Fred Smith on a piece of paper and place it into the box (see Figure 3-2). Well,
that’s the same process as assigning a string value to a variable, like this:

$username = "Fred Smith";

The quotation marks indicate that “Fred Smith” is a string of characters. You must
enclose each string in either quotation marks or apostrophes (single quotes), although
there is a subtle difference between the two types of quote, which is explained later.
When you want to see what’s in the box, you open it, take the piece of paper out, and
read it. In PHP, doing so looks like this:

echo $username;

Or you can assign it to another variable (photocopy the paper and place the copy in
another matchbox), like this:

$current_user = $username;

If you are keen to start trying out PHP for yourself, you could try entering the examples
in this chapter into an IDE (as recommended at the end of Chapter 2), to see instant
results, or you could enter the code in Example 3-4 into a program editor and save it
to your web development directory (also discussed in Chapter 2) as test1.php.

Figure 3-2. You can think of variables as matchboxes containing items

38 | Chapter 3: Introduction to PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 58 of 528

And don’t worry if you’re still having difficulty getting to grips with using arrays, as the
subject is explained in detail in Chapter 6.

Variable naming rules

When creating PHP variables, you must follow these four rules:

• Variable names must start with a letter of the alphabet or the _ (underscore)
character.

• Variable names can contain only the characters: a-z, A-Z, 0-9, and _ (underscore).

• Variable names may not contain spaces. If a variable must comprise more than one
word it should be separated with the _ (underscore) character. (e.g., $user_name).

• Variable names are case-sensitive. The variable $High_Score is not the same as the
variable $high_score.

Operators
Operators are the mathematical, string, comparison, and logical commands such as
plus, minus, times, and divide. PHP looks a lot like plain arithmetic; for instance, the
following statement outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, take a moment to learn about the
various operators it provides.

Arithmetic operators

Arithmetic operators do what you would expect. They are used to perform mathemat-
ics. You can use them for the main four operations (plus, minus, times, and divide) as
well as to find a modulus (the remainder after a division) and to increment or decrement
a value (see Table 3-1).

Table 3-1. Arithmetic operators

Operator Description Example

+ Addition $j + 1

- Subtraction $j - 6

* Multiplication $j * 11

/ Division $j / 4

% Modulus (division remainder) $j % 9

++ Increment ++$j

-- Decrement --$j

42 | Chapter 3: Introduction to PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 62 of 528

By the way, the correct answer to the previous question is that the echo statement will
display the result −1, because $y was decremented right after it was accessed in the if
statement, and before the echo statement.

String concatenation

String concatenation uses the period (.) to append one string of characters to another.
The simplest way to do this is as follows:

echo "You have " . $msgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the output from this line of code
will be:

You have 5 messages.

Just as you can add a value to a numeric variable with the += operator, you can append
one string to another using .= like this:

$bulletin .= $newsflash;

In this case, if $bulletin contains a news bulletin and $newsflash has a news flash, the
command appends the news flash to the news bulletin so that $bulletin now comprises
both strings of text.

String types

PHP supports two types of strings that are denoted by the type of quotation mark that
you use. If you wish to assign a literal string, preserving the exact contents, you should
use the single quotation mark (apostrophe) like this:

$info = 'Preface variables with a $ like this: $variable';

In this case, every character within the single-quoted string is assigned to $info. If you
had used double quotes, PHP would have attempted to evaluate $variable as a variable.

On the other hand, when you want to include the value of a variable inside a string,
you do so by using double-quoted strings:

echo "There have been $count presidents of the US";

As you will realize, this syntax also offers a simpler form of concatenation in which you
don’t need to use a period, or close and reopen quotes, to append one string to another.
This is called variable substitution and you will notice some applications using it ex-
tensively and others not using it at all.

Escaping characters

Sometimes a string needs to contain characters with special meanings that might be
interpreted incorrectly. For example, the following line of code will not work, because
the second quotation mark encountered in the word sister’s will tell the PHP parser that

46 | Chapter 3: Introduction to PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 66 of 528

Example 3-13. An expanded version of the longdate function

<?php
function longdate($timestamp)
{
 $temp = date("l F jS Y", $timestamp);
 return "The date is $temp";
}
?>

Here we have assigned the value returned by the date function to the temporary variable
$temp, which is then inserted into the string returned by the function. As soon as the
function returns, the value of $temp is cleared, as if it had never been used at all.

Now, to see the effects of variable scope, let’s look at some similar code in Exam-
ple 3-14. Here $temp has been created before calling the longdate function.

Example 3-14. This attempt to access $temp in function longdate will fail

<?php
$temp = "The date is ";
echo longdate(time());

function longdate($timestamp)
{
 return $temp . date("l F jS Y", $timestamp);
}
?>

However, because $temp was neither created within the longdate function nor passed
to it as a parameter, longdate cannot access it. Therefore, this code snippet only outputs
the date and not the preceding text. In fact it will first display the error message “Notice:
Undefined variable: temp.”

The reason for this is that, by default, variables created within a function are local to
that function and variables created outside of any functions can be accessed only by
nonfunction code.

Some ways to repair Example 3-14 appear in Examples 3-15 and 3-16.

Example 3-15. Rewriting to refer to $temp within its local scope fixes the problem

<?php
$temp = "The date is ";
echo $temp . longdate(time());

function longdate($timestamp)
{
 return date("l F jS Y", $timestamp);
}
?>

Example 3-15 moves the reference to $temp out of the function. The reference appears
in the same scope where the variable was defined.

54 | Chapter 3: Introduction to PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 74 of 528

Table 3-6. PHP’s superglobal variables

Superglobal name Contents

$GLOBALS All variables that are currently defined in the global scope of the script. The variable names are the keys
of the array.

$_SERVER Information such as headers, paths, and script locations. The entries in this array are created by the web
server and there is no guarantee that every web server will provide any or all of these.

$_GET Variables passed to the current script via the HTTP GET method.

$_POST Variables passed to the current script via the HTTP POST method.

$_FILES Items uploaded to the current script via the HTTP POST method.

$_COOKIE Variables passed to the current script via HTTP cookies.

$_SESSION Session variables available to the current script.

$_REQUEST Contents of information passed from the browser; by default, $_GET, $_POST and $_COOKIE.

$_ENV Variables passed to the current script via the environment method.

All of the superglobals are named with a single initial underscore and only capital let-
ters; therefore, you should avoid naming your own variables in this manner to avoid
potential confusion.

To illustrate how you use them, let’s look at a bit of information that many sites employ.
Among the many nuggets of information supplied by superglobal variables is the URL
of the page that referred the user to the current web page. This referring page infor-
mation can be accessed like this:

$came_from = $_SERVER['HTTP_REFERRER'];

It’s that simple. Oh, and if the user came straight to your web page, such as by typing
its URL directly into a browser, $came_from will be set to an empty string.

Superglobals and security

A word of caution is in order before you start using superglobal variables, because they
are often used by hackers trying to find exploits to break in to your website. What they
do is load up $_POST, $_GET, or other superglobals with malicious code, such as Unix
or MySQL commands that can damage or display sensitive data if you naïvely access
them.

Therefore, you should always sanitize superglobals before using them. One way to do
this is via the PHP htmlentities function. It converts all characters into HTML entities.
For example, less-than and greater-than characters (< and >) are transformed into the
strings < and > so that they are rendered harmless, as are all quotes and back-
slashes, and so on.

Therefore, a much better way to access $_SERVER (and other superglobals) is:

$came_from = htmlentities($_SERVER['HTTP_REFERRER']);

The Structure of PHP | 57

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 77 of 528

This chapter has provided you with a solid background in using PHP. In Chapter 4,
we’ll start using what’s you’ve learned to build expressions and control program flow.
In other words, some actual programming.

But before moving on, I recommend that you test yourself with some (if not all) of the
following questions to ensure that you have fully digested the contents of this chapter.

Test Your Knowledge: Questions
Question 3-1

What tag is used to cause PHP to start interpreting program code? And what is the
short form of the tag?

Question 3-2
What are the two types of comment tags?

Question 3-3
Which character must be placed at the end of every PHP statement?

Question 3-4
Which symbol is used to preface all PHP variables?

Question 3-5
What can a variable store?

Question 3-6
What is the difference between $variable = 1 and $variable == 1?

Question 3-7
Why do you suppose that an underscore is allowed in variable names
($current_user) whereas hyphens are not ($current-user) ?

Question 3-8
Are variable names case-sensitive?

Question 3-9
Can you use spaces in variable names?

Question 3-10
How do you convert one variable type to another (say, a string to a number)?

Question 3-11
What is the difference between ++$j and $j++?

Question 3-12
Are the operators && and and interchangeable?

Question 3-13
How can you create a multiline echo or assignment?

Question 3-14
Can you redefine a constant?

58 | Chapter 3: Introduction to PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 78 of 528

because PHP does not allow you to redefine them; the uppercase ones may be
redefined—something you should bear in mind if you import third-party code.

Example 4-1 shows some simple expressions: the two I just mentioned, plus a couple
more. For each line, it prints out a letter between a and d, followed by a colon and the
result of the expressions (the
 tag is there to create a line break and thus separate
the output into four lines in HTML).

Example 4-1. Four simple Boolean expressions

<?php
echo "a: [" . (20 > 9) . "]
";
echo "b: [" . (5 == 6) . "]
";
echo "c: [" . (1 == 0) . "]
";
echo "d: [" . (1 == 1) . "]
";
?>

The output from this code is as follows:

a: [1]
b: []
c: []
d: [1]

Notice that both expressions a: and d: evaluate to TRUE, which has a value of 1. But
b: and c:, which evaluate to FALSE, do not show any value, because in PHP the constant
FALSE is defined as NULL, or nothing. To verify this for yourself, you could enter the code
in Example 4-2.

Example 4-2. Outputting the values of TRUE and FALSE

<?php // test2.php
echo "a: [" . TRUE . "]
";
echo "b: [" . FALSE . "]
";
?>

which outputs the following:

a: [1]
b: []

By the way, in some languages FALSE may be defined as 0 or even −1, so it’s worth
checking on its definition in each language.

Literals and Variables
The simplest form of an expression is a literal, which simply means something that
evaluates to itself, such as the number 73 or the string “Hello”. An expression could
also simply be a variable, which evaluates to the value that has been assigned to it. They
are both types of expressions, because they return a value.

Example 4-3 shows five different literals, all of which return values, albeit of different
types.

62 | Chapter 4: Expressions and Control Flow in PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 82 of 528

Example 4-7. Three expressions using operators of mixed precedence

1 + 2 * 3 - 4 * 5
2 - 4 * 5 * 3 + 1
5 + 2 - 4 + 1 * 3

If there were no operator precedence, these three expressions would evaluate to 25,
−29, and 12, respectively. But because multiplication and division take precedence over
addition and subtraction, there are implied parentheses around these parts of the ex-
pressions, which would look like Example 4-8 if they were visible.

Example 4-8. Three expressions showing implied parentheses

1 + (2 * 3) - (4 * 5)
2 - (4 * 5 * 3) + 1
5 + 2 - 4 + (1 * 3)

Clearly, PHP must evaluate the subexpressions within parentheses first to derive the
semicompleted expressions in Example 4-9.

Example 4-9. After evaluating the subexpressions in parentheses

1 + (6) - (20)
2 - (60) + 1
5 + 2 - 4 + (4)

The final results of these expressions are −13, −57, and 6, respectively (quite different
from the results of 25, −29, and 12 that we would have seen had there been no operator
precedence).

Of course, you can override the default operator precedence by inserting your own
parentheses and force the original results that we would have seen, had there been no
operator precedence (see Example 4-10).

Example 4-10. Forcing left-to-right evaluation

((1 + 2) * 3 - 4) * 5
(2 - 4) * 5 * 3 + 1
(5 + 2 - 4 + 1) * 3

With parentheses correctly inserted, we now see the values 25, −29, and 12,
respectively.

Table 4-2 lists PHP’s operators in order of precedence from high to low.

Table 4-2. The precedence of PHP operators (high to low)

Operator(s) Type

() Parentheses

++ -- Increment/Decrement

! Logical

* / % Arithmetic

Operators | 65

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 85 of 528

For example, any strings composed entirely of numbers will be converted to numbers
whenever compared with a number. In Example 4-13, $a and $b are two different strings
and we would therefore expect neither of the if statements to output a result.

Example 4-13. The equality and identity operators

<?php
$a = "1000";
$b = "+1000";
if ($a == $b) echo "1";
if ($a === $b) echo "2";
?>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to TRUE. This is because both strings were
first converted to numbers, and 1000 is the same numerical value as +1000.

In contrast, the second if statement uses the identity operator—three equals signs in
a row—which prevents PHP from automatically converting types. $a and $b are there-
fore compared as strings and are now found to be different, so nothing is output.

As with forcing operator precedence, whenever you feel there may be doubt about how
PHP will convert operand types, you can use the identity operator to turn this behavior
off.

In the same way that you can use the equality operator to test for operands being equal,
you can test for them not being equal using !=, the inequality operator. Take a look at
Example 4-14, which is a rewrite of Example 4-13 in which the equality and identity
operators have been replaced with their inverses.

Example 4-14. The inequality and not identical operators

<?php
$a = "1000";
$b = "+1000";
if ($a != $b) echo "1";
if ($a !== $b) echo "2";
?>

And, as you might expect, the first if statement does not output the number 1, because
the code is asking whether $a and $b are not equal to each other numerically.

Instead, it outputs the number 2, because the second if statement is asking whether
$a and $b are not identical to each other in their present operand types, and the answer
is TRUE; they are not the same.

Comparison operators

Using comparison operators, you can test for more than just equality and inequality.
PHP also gives you > (is greater than), < (is less than), >= (is greater than or equal to),
and <= (is less than or equal to) to play with. Example 4-15 shows these operators in use.

68 | Chapter 4: Expressions and Control Flow in PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 88 of 528

When coding, remember to bear in mind that AND and OR have lower
precedence than the other versions of the operators, && and ||. In com-
plex expressions, it may be safer to use && and || for this reason.

The OR operator can cause unintentional problems in if statements, because the second
operand will not be evaluated if the first is evaluated as TRUE. In Example 4-17, the
function getnext will never be called if $finished has a value of 1.

Example 4-17. A statement using the OR operator

<?php
if ($finished == 1 OR getnext() == 1) exit;
?>

If you need getnext to be called at each if statement, you should rewrite the code as
has been done in Example 4-18.

Example 4-18. The “if ... OR” statement modified to ensure calling of getnext

<?php
$gn = getnext();
if ($finished == 1 OR $gn == 1) exit;
?>

In this case, the code in function getnext will be executed and the value returned stored
in $gn before the if statement.

Table 4-5 shows all the possible variations of using the logical operators. You should
also note that !TRUE equals FALSE and !FALSE equals TRUE.

Table 4-5. All possible PHP logical expressions

Inputs Operators and results

a b AND OR XOR

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE

Conditionals
Conditionals alter program flow. They enable you to ask questions about certain things
and respond to the answers you get in different ways. Conditionals are central to dy-
namic web pages—the goal of using PHP in the first place—because they make it easy
to create different output each time a page is viewed.

70 | Chapter 4: Expressions and Control Flow in PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 90 of 528

Example 4-21. An if...elseif...else statement with curly braces

<?php
if ($bank_balance < 100)
{
 $money += 1000;
 $bank_balance += $money;
}
elseif ($bank_balance > 200)
{
 $savings += 100;
 $bank_balance -= 100;
}
else
{
 $savings += 50;
 $bank_balance -= 50;
}
?>

In the example, an elseif statement has been inserted between the if and else state-
ments. It checks whether your bank balance exceeds $200 and, if so, decides that you
can afford to save $100 of it this month.

Although I’m starting to stretch the metaphor a bit too far, you can imagine this as a
multiway set of detours (see Figure 4-3).

An else statement closes either an if...else or an
if...elseif...else statement. You can leave out a final else if it is not
required, but you cannot have one before an elseif; neither can you
have an elseif before an if statement.

You may have as many elseif statements as you like. But as the number of elseif
statements increase, you would probably be better advised to consider a switch state-
ment if it fits your needs. We’ll look at that next.

The switch Statement
The switch statement is useful in cases in which one variable or the result of an ex-
pression can have multiple values, which should each trigger a different function.

For example, consider a PHP-driven menu system that passes a single string to the main
menu code according to what the user requests. Let’s say the options are Home, About,
News, Login, and Links, and we set the variable $page to one of these, according to the
user’s input.

The code for this written using if...elseif...else might look like Example 4-22.

74 | Chapter 4: Expressions and Control Flow in PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 94 of 528

• A modification expression

These are separated by semicolons like this: for (expr1 ; expr2 ; expr3). At the start
of the first iteration of the loop, the initialization expression is executed. In the case of
the times table code, $count is initialized to the value 1. Then, each time round the loop,
the condition expression (in this case, $count <= 12) is tested, and the loop is entered
only if the condition is TRUE. Finally, at the end of each iteration, the modification
expression is executed. In the case of the times table code, the variable $count is
incremented.

All this structure neatly removes any requirement to place the controls for a loop within
its body, freeing it up just for the statements you want the loop to perform.

Remember to use curly braces with a for loop if it will contain more than one statement,
as in Example 4-34.

Example 4-34. The for loop from Example 4-33 with added curly braces

<?php
for ($count = 1 ; $count <= 12 ; ++$count)
{
 echo "$count times 12 is " . $count * 12;
 echo "
";
}
?>

Let’s compare when to use for and while loops. The for loop is explicitly designed
around a single value that changes on a regular basis. Usually you have a value that
increments, as when you are passed a list of user choices and want to process each
choice in turn. But you can transform the variable any way you like. A more complex
form of the for statement even lets you perform multiple operations in each of the three
parameters:

for ($i = 1, $j = 1 ; $i + $j < 10 ; $i++ , $j++)
{
 // ...
}

That’s complicated and not recommended for first-time users. The key is to distinguish
commas from semicolons. The three parameters must be separated by semicolons.
Within each parameter, multiple statements can be separated by commas. Thus, in the
previous example, the first and third parameters each contain two statements:

$i = 1, $j = 1 // Initialize $i and $j
$i + $j < 1 // Terminating condition
$i++ , $j++ // Modify $i and $j at the end of each iteration

The main thing to take from this example is that you must separate the three parameter
sections with semicolons, not commas (which should be used only to separate state-
ments within a parameter section).

82 | Chapter 4: Expressions and Control Flow in PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 102 of 528

function fix_names($n1, $n2, $n3)
{
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));
 return array($n1, $n2, $n3);
}
?>

This method has the benefit of keeping all three names separate, rather than concate-
nating them into a single string, so you can refer to any user simply by their first or last
name, without having to extract either name from the returned string.

Figure 5-2. Imagining a reference as a thread attached to a variable

Passing by Reference
In PHP, the & symbol, when prefaced to a variable, tells the parser to pass a reference
to the variable’s value, not the value itself. This concept can be hard to get your head
around, so let’s go back to the matchbox metaphor from Chapter 3.

Imagine that, instead of taking a piece of paper out of a matchbox, reading it, copying
it to another piece of paper, putting the original back, and passing the copy to a function
(phew!), you simply attach a piece of thread to the original piece of paper and pass one
end of it to the function (see Figure 5-2).

Now the function can follow the thread to find the data to be accessed. This avoids all
the overhead of creating a copy of the variable just for the function’s use. What’s more,
the function can now modify the variable’s value.

This means you can rewrite Example 5-3 to pass references to all the parameters, and
then the function can modify these directly (see Example 5-4).

94 | Chapter 5: PHP Functions and Objects

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 114 of 528

echo $a1 . " " . $a2 . " " . $a3 . "
";
fix_names();
echo $a1 . " " . $a2 . " " . $a3;

function fix_names()
{
 global $a1; $a1 = ucfirst(strtolower($a1));
 global $a2; $a2 = ucfirst(strtolower($a2));
 global $a3; $a3 = ucfirst(strtolower($a3));
}
?>

Now you don’t have to pass parameters to the function, and it doesn’t have to accept
them. Once declared, these variables remain global and available to the rest of your
program, including its functions.

If at all possible, in order to retain as much local scope as possible, you should try
returning arrays or using variables by association. Otherwise, you will begin to lose
some of the benefits of functions.

Recap of Variable Scope
A quick reminder of what you know from Chapter 3:

• Local variables are accessible just from the part of code where you define them. If
they’re outside of a function, they can be accessed by all code outside of functions,
classes, and so on. If a variable is inside a function, only that function can access
the variable, and its value is lost when the function returns.

• Global variables are accessible from all parts of your code.

• Static variables are accessible only within the function that declared them but retain
their value over multiple calls.

Including and Requiring Files
As you progress in your use of PHP programming, you are likely to start building a
library of functions that you think you will need again. You’ll also probably start using
libraries created by other programmers.

There’s no need to copy and paste these functions into your code. You can save them
in separate files and use commands to pull them in. There are two types of commands
to perform this action: include and require.

The include Statement
Using include, you can tell PHP to fetch a particular file and load all its contents. It’s
as if you pasted the included file into the current file at the insertion point. Exam-
ple 5-6 shows how you would include a file called library.php.

96 | Chapter 5: PHP Functions and Objects

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 116 of 528

Example 5-6. Including a PHP file

<?php
include "library.php";

// Your code goes here
?>

Using include_once
Each time you issue the include directive, it includes the requested file again, even if
you’ve already inserted it. For instance, suppose that library.php contains a lot of useful
functions, so you include it in your file, but also include another library that includes
library.php. Through nesting, you’ve inadvertently included library.php twice. This will
produce error messages, because you’re trying to define the same constant or function
multiple times. So you should use include_once instead (see Example 5-7).

Example 5-7. Including a PHP file only once

<?php
include_once "library.php";

// Your code goes here
?>

Then, whenever another include or include_once is encountered, if it has already been
executed, it will be completely ignored. To determine whether the file has already been
executed, the absolute file path is matched after all relative paths are resolved and the
file is found in your include path.

In general, it’s probably best to stick with include_once and ignore the
basic include statement. That way you will never have the problem of
files being included multiple times.

Using require and require_once
A potential problem with include and include_once is that PHP will only attempt to
include the requested file. Program execution continues even if the file is not found.

When it is absolutely essential to include a file, require it. For the same reasons I gave
for using include_once, I recommend that you generally stick with require_once when-
ever you need to require a file (see Example 5-8).

Example 5-8. Requiring a PHP file only once

<?php
require_once "library.php";

Including and Requiring Files | 97

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 117 of 528

Here I have also used an invaluable function called print_r. It asks PHP to display
information about a variable in human readable form. The _r stands for “in human
readable format.” In the case of the new object $object, it prints the following:

User Object
(
 [name] =>
 [password] =>
)

However, a browser compresses all the whitespace, so the output in a browser is slightly
harder to read:

User Object ([name] => [password] =>)

In any case, the output says that $object is a user-defined object that has the properties
name and password.

Creating an Object
To create an object with a specified class, use the new keyword, like this: object = new
Class. Here are a couple of ways in which we could do this:

$object = new User;
$temp = new User('name', 'password');

On the first line, we simply assign an object to the User class. In the second, we pass
parameters to the call.

A class may require or prohibit arguments; it may also allow arguments, but not require
them.

Accessing Objects
Let’s add a few lines more to Example 5-10 and check the results. Example 5-11 extends
the previous code by setting object properties and calling a method.

Example 5-11. Creating and interacting with an object

<?php
$object = new User;
print_r($object); echo "
";

$object->name = "Joe";
$object->password = "mypass";
print_r($object); echo "
";

$object->save_user();

class User
{
 public $name, $password;

PHP Objects | 101

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 121 of 528

Once you have digested the contents of this chapter, you should have a strong feel for
what PHP can do for you. You should be able to use functions with ease and, if you
wish, write object-oriented code. In Chapter 6, we’ll finish off our initial exploration
of PHP by looking at the workings of PHP arrays.

Test Your Knowledge: Questions
Question 5-1

What is the main benefit of using a function?

Question 5-2
How many values can a function return?

Question 5-3
What is the difference between accessing a variable by name and by reference?

Question 5-4
What is the meaning of “scope” in PHP?

Question 5-5
How can you incorporate one PHP file within another?

Question 5-6
How is an object different from a function?

Question 5-7
How do you create a new object in PHP?

Question 5-8
What syntax would you use to create a subclass from an existing one?

Question 5-9
How can you call an initializing piece of code when an object is created?

Question 5-10
Why is it a good idea to explicitly declare properties within a class?

See the section “Chapter 5 Answers” on page 439 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 113

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 133 of 528

Note that if $fred has not yet been assigned a value, an “Undefined variable” message
will be generated.

count()
Although the each function and foreach...as loop structure are excellent ways to walk
through an array’s contents, sometimes you need to know exactly how many elements
there are in your array, particularly if you will be referencing them directly. To count
all the elements in the top level of an array, use a command such as the following:

echo count($fred);

Should you wish to know how many elements there are altogether in a multidimen-
sional array, you can use a statement such as:

echo count($fred, 1);

The second parameter is optional and sets the mode to use. It should be either a 0 to
limit counting to only the top level, or 1 to force recursive counting of all subarray
elements, too.

sort()
Sorting is so common that PHP provides a built-in function. In its simplest form, you
would use it like this:

sort($fred);

Unlike some other functions, sort will act directly on the supplied array rather than
returning a new array of sorted elements. Instead it returns TRUE on success and FALSE
on error and also supports a few flags, but the main two that you might wish to use
force sorting to be made either numerically or as strings, like this:

sort($fred, SORT_NUMERIC);
sort($fred, SORT_STRING);

You can also sort an array in reverse order using the rsort function, like this:

rsort($fred, SORT_NUMERIC);
rsort($fred, SORT_STRING);

shuffle()
There may be times when you need the elements of an array to be put in random order,
such as when creating a game of playing cards:

shuffle($cards);

Like sort, shuffle acts directly on the supplied array and returns TRUE on success or
FALSE on error.

124 | Chapter 6: PHP Arrays

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 144 of 528

When a form is submitted over the Web, the web server unpacks the variables into a
global array for the PHP script. If the variables were sent using the GET method, they
will be placed in an associative array called $_GET, and if they were sent using POST, they
will be placed in an associative array called $_POST.

You could, of course, walk through such associative arrays in the manner shown in the
examples so far. However, sometimes you just want to store the values sent into vari-
ables for later use. In this case, you can have PHP do the job automatically for you:

extract($_GET);

So, for example, if the query string parameter q is sent to a PHP script along with the
associated value “Hi there”, a new variable called $q will be created and assigned that
value.

Be careful with this approach, though, because if any extracted variables conflict with
ones that you have already defined, your existing values will be overwritten. To avoid
this possibility, you can use one of the many additional parameters available to this
function, like this:

extract($_GET, EXTR_PREFIX_ALL, 'fromget');

In this case, all the new variables will begin with the given prefix string followed by an
underscore, so $q will become $fromget_q. I strongly recommend that you use this
version of the function when handling the $_GET and $_POST arrays, or any other array
whose keys could be controlled by the user, because malicious users could submit keys
chosen deliberately to overwrite commonly used variable names and compromise your
website.

compact()
There are also times when you want to use compact, the inverse of extract, to create an
array from variables and their values. Example 6-14 shows how you might use this
function.

Example 6-14. Using the compact function

<?php
$fname = "Elizabeth";
$sname = "Windsor";
$address = "Buckingham Palace";
$city = "London";
$country = "United Kingdom";

$contact = compact('fname', 'sname', 'address', 'city', 'country');
print_r($contact);
?>

The result of running Example 6-14 is:

Array
(

126 | Chapter 6: PHP Arrays

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 146 of 528

Table 7-4. The major date function format specifiers

Format Description Returned value

Day specifiers

d Day of month, 2 digits, with leading zeros 01 to 31

D Day of the week, three letters Mon to Sun

j Day of the month, no leading zeros 1 to 31

l Day of week, full names Sunday to Saturday

N Day of week, numeric, Monday to Sunday 1 to 7

S Suffix for day of month (useful with specifier j) st, nd, rd, or th

w Day of week, numeric, Sunday to Saturday 0 to 6

z Day of year 0 to 365

Week specifier

W Week number of year 1 to 52

Month specifiers

F Month name January to December

m Month number with leading zeros 01 to 12

M Month name, three letters Jan to Dec

n Month number, no leading zeros 1 to 12

t Number of days in given month 28, 29, 30 or 31

Year specifiers

L Leap year 1 = Yes, 0 = No

Y Year, 4 digits 0000 to 9999

y Year, 2 digits 00 to 99

Time specifiers

a Before or after midday, lowercase am or pm

A Before or after midday, uppercase AM or PM

g Hour of day, 12-hour format, no leading zeros 1 to 12

G Hour of day, 24-hour format, no leading zeros 1 to 24

h Hour of day, 12-hour format, with leading zeros 01 to 12

H Hour of day, 24-hour format, with leading zeros 01 to 24

i Minutes, with leading zeros 00 to 59

s Seconds, with leading zeros 00 to 59

Date and Time Functions | 135

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 155 of 528

Line 1
Line 2
Line 3

This simple example shows the sequence that all file handling takes:

1. Always start by opening the file. This is done through a call to fopen.

2. Then you can call other functions; here we write to the file (fwrite), but you can
also read from an existing file (fread or fgets) and do other things.

3. Finish by closing the file (fclose). Although the program does this for you when it
ends, you should clean up yourself by closing the file when you’re finished.

Every open file requires a file resource so that PHP can access and manage it. The
preceding example sets the variable $fh (which I chose to stand for file handle) to the
value returned by the fopen function. Thereafter, each file handling function that ac-
cesses the opened file, such as fwrite or fclose, must be passed $fh as a parameter to
identify the file being accessed. Don’t worry about the content of the $fh variable; it’s
a number PHP uses to refer to internal information about the file—you just pass the
variable to other functions.

Upon failure, FALSE will be returned by fopen. The previous example shows a simple
way to capture and respond to the failure: it calls the die function to end the program
and gives the user an error message. A web application would never abort in this crude
way (you would create a web page with an error message instead), but this is fine for
our testing purposes.

Notice the second parameter to the fopen call. It is simply the character w, which tells
the function to open the file for writing. The function creates the file if it doesn’t already
exist. Be careful when playing around with these functions: if the file already exists, the
w mode parameter causes the fopen call to delete the old contents (even if you don’t
write anything new!).

There are several different mode parameters that can be used here, as detailed in Ta-
ble 7-5.

Table 7-5. The supported fopen modes

Mode Action Description

'r' Read from file start Open for reading only; place the file pointer at the beginning of the file. Return
FALSE if the file doesn’t already exist.

'r+' Read from file start and al-
low writing

Open for reading and writing; place the file pointer at the beginning of the file. Return
FALSE if the file doesn’t already exist.

'w' Write from file start and
truncate file

Open for writing only; place the file pointer at the beginning of the file and truncate the
file to zero length. If the file doesn’t exist, attempt to create it.

'w+' Write from file start, trun-
cate file and allow reading

Open for reading and writing; place the file pointer at the beginning of the file and
truncate the file to zero length. If the file doesn’t exist, attempt to create it.

138 | Chapter 7: Practical PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 158 of 528

As with moving a file, a warning message will be displayed if the file doesn’t exist, which
you can avoid by using file_exists to first check for its existence before calling unlink.

Updating Files
Often you will want to add more data to a saved file, which you can do in many ways.
You can use one of the append write modes (see Table 7-5), or you can simply open a
file for reading and writing with one of the other modes that supports writing, and
move the file pointer to the correct place within the file that you wish to write to or
read from.

The file pointer is the position within a file at which the next file access will take place,
whether it’s a read or a write. It is not the same as the file handle (as stored in the
variable $fh in Example 7-4), which contains details about the file being accessed.

You can see this in action by typing in Example 7-11 and saving it as update.php. Then
call it up in your browser.

Example 7-11. Updating a file

<?php // update.php
$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
$text = fgets($fh);
fseek($fh, 0, SEEK_END);
fwrite($fh, "$text") or die("Could not write to file");
fclose($fh);
echo "File 'testfile.txt' successfully updated";
?>

What this program does is open testfile.txt for both reading and writing by setting the
mode with '+r', which puts the file pointer right at the start. It then uses the fgets
function to read in a single line from the file (up to the first line feed). After that, the
fseek function is called to move the file pointer right to the file end, at which point the
line of text that was extracted from the start of the file (stored in $text) is then appended
to file’s end and the file is closed. The resulting file now looks like this:

Line 1
Line 2
Line 3
Line 1

The first line has successfully been copied and then appended to the file’s end.

As used here, in addition to the $fh file handle, the fseek function was passed two other
parameters, 0 and SEEK_END. The SEEK_END tells the function to move the file pointer to
the end of the file and the 0 parameter tells it how many positions it should then be
moved backward from that point. In the case of Example 7-11, a value of 0 is used,
because the pointer is required to remain at the file’s end.

File Handling | 141

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 161 of 528

XHTML
I’ve used some elements of XHTML (eXtensible Hypertext Markup Language) already
in this book, although you may not have realized it. For example, instead of the simple
HTML tag
, I’ve been using the XHTML
 version. But what’s the difference
between the two markup languages?

Well, not a lot at first glance, but XHTML improves on HTML by clearing up a lot of
little inconsistencies that make it hard to process. HTML requires quite a complex and
very lenient parser, whereas XHTML, which uses standard syntax more like XML (eX-
tensible Markup Language), is very easily processed with quite a simple parser—a
parser being a piece of code that processes tags and commands and works out what
they mean.

The Benefits of XHTML
XHTML documents can be quickly processed by any program that can handle XML
files. As more and more devices such as iPhones and BlackBerries become web-enabled,
it is increasingly important to ensure that web content looks good on them as well as
on a computer’s web browser. The tighter syntax required by XHTML is a big factor
in helping this cross-platform compatibility.

So what is happening right now is that browser developers, in order to be able to provide
faster and more powerful programs, are trying to push web developers over to using
XHTML, and the time may eventually come when HTML is superseded by XHTML—
so it’s a good idea to start using it now.

XHTML Versions
The XHTML standard is constantly evolving, and there are a few versions in use:

XHTML 1.0
This incorporates the contents from the HTML 4.01 standard but requires the use
of XML syntax.

XHTML 1.1
This version has not been widely adopted, although it is largely compatible with
XHTML 1.0 and HTML 4. A major feature of this version is that CSS is used to
control browser presentation.

XHTML 1.2
This version is only in the proposal stage and is not currently implemented.

XHTML 2.0
This version of XHTML makes a totally clean break from previous versions and
also from HTML 4. Unsurprisingly, there are a tremendous number of changes.

XHTML | 151

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 171 of 528

Starting the Command-Line Interface
The following sections describe relevant instructions for Windows, Mac OS X, and
Linux.

Windows users

If you installed the EasyPHP WAMP as explained in Chapter 2, you will be able to
access the MySQL executable from the following directory:

\Program Files\EasyPHP 3.0\mysql\bin

If you installed EasyPHP in a place other than \Program Files, you will
need to use that directory instead. Also, if the version of EasyPHP is not
3.0, you will need to change that, too.

By default, the initial MySQL user will be root and will not have had a password set.
Seeing as this is a development server that only you should be able to access, we won’t
worry about creating one yet.

So, to enter MySQL’s command-line interface, select Start→Run and enter CMD into the
Run box, then press Return. This will call up a Windows Command prompt. From
there, enter the following (making any appropriate changes as discussed previously):

"\Program Files\EasyPHP 3.0\mysql\bin\mysql" -u root

Note the quotation marks surrounding the main path and filename.
These are present because the name contains spaces, which the Com-
mand prompt doesn’t correctly interpret, and the quotation marks
group the parts of the filename into a single string for the Command
program to understand.

This command tells MySQL to log you in as user root, without a password. You will
now be logged into MySQL and can start entering commands. So, to be sure everything
is working as it should be, enter the following—the results should be similar to Fig-
ure 8-1:

SHOW databases;

If this has not worked and you get an error such as “Can’t connect to MySQL server
on ‘localhost,’” make sure that you have EasyPHP running in your System Tray and
that MySQL is enabled. Otherwise, you are ready to move on to the next section,
“Using the Command-Line Interface” on page 163.

Accessing MySQL via the Command Line | 159

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 179 of 528

I’ll cover most of these as we proceed, but first, you need to remember a couple of
points about MySQL commands:

• SQL commands and keywords are case-insensitive. CREATE, create, and CrEaTe all
mean the same thing. However, for the sake of clarity, the recommended style is
to use uppercase.

• Table names are case-sensitive on Linux and Mac OS X, but case-insensitive on
Windows. So for portability purposes, you should always choose a case and stick
to it. The recommended style is to use lowercase for tables.

Creating a database

If you are working on a remote server and have only a single user account and access
to a single database that was created for you, move on to the section “Creating a ta-
ble” on page 166. Otherwise, get the ball rolling by issuing the following command to
create a new database called publications:

CREATE DATABASE publications;

A successful command will return a message that doesn’t mean much yet—“Query
OK, 1 row affected (0.00 sec)”—but will make sense soon. Now that you’ve created
the database, you want to work with it, so issue:

USE publications;

You should now see the message Database changed and will then be set to proceed with
the following examples.

Creating users

Now that you’ve seen how easy it is to use MySQL, and created your first database, it’s
time to look at how you create users, as you probably won’t want to grant your PHP
scripts root access to MySQL—it could cause a real headache should you get hacked.

To create a user, issue the GRANT command, which takes the following form (don’t type
this in—it’s not an actual working command):

GRANT PRIVILEGES ON database.object TO 'username@hostname'
 IDENTIFIED BY 'password';

This should be pretty straightforward, with the possible exception of the
database.object part. What this refers to is the database itself and the objects it con-
tains, such as tables (see Table 8-4).

Table 8-4. Example parameters for the GRANT command

Arguments Meaning

. All databases and all their objects

database.* Only the database called database and all its objects

database.object Only the database called database and its object called object

Accessing MySQL via the Command Line | 165

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 185 of 528

The DESCRIBE command is an invaluable debugging aid when you need to ensure that
you have correctly created a MySQL table. You can also use it to remind yourself about
a table’s field or column names and the types of data in each one. Let’s look at each of
the headings in detail:

Field
The name of each field or column within a table.

Type
The type of data being stored in the field.

Null
Whether a field is allowed to contain a value of NULL.

Key
MySQL supports keys or indexes, which are quick ways to look up and search for
data. The Key heading shows what type of key (if any) has been applied.

Default
The default value that will be assigned to the field if no value is specified when a
new row is created.

Extra
Additional information, such as whether a field is set to auto-increment.

Data Types
In Example 8-3, you may have noticed that three of the table’s fields were given the
data type of VARCHAR, and one was given the type CHAR. The term VARCHAR stands for
VARiable length CHARacter string and the command takes a numeric value that tells
MySQL the maximum length allowed to a string stored in this field.

This data type is very useful, as MySQL can then plan the size of databases and perform
lookups and searches more easily. The downside is that if you ever attempt to assign a
string value longer than the length allowed, it will be truncated to the maximum length
declared in the table definition.

The year field, however, has more predictable values, so instead of VARCHAR we use the
more efficient CHAR(4) data type. The parameter of 4 allows for four bytes of data,
supporting all years from −999 to 9999. You could, of course, just store two-digit values
for the year, but if your data is going to still be needed in the following century, or may
otherwise wrap around, it will have to be sanitized first—much like the “millennium
bug” that would have caused dates beginning on January 1, 2000, to be treated as 1900
on many of the world’s biggest computer installations.

168 | Chapter 8: Introduction to MySQL

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 188 of 528

one with a possible range from a negative value, through zero, to a positive one, and
an unsigned one has a value ranging from zero to a positive one. They can both hold
the same number of values—just picture a signed number as being shifted halfway to
the left so that half its values are negative and half are positive. Note that floating-point
values (of any precision) may only be signed.

Table 8-10. MySQL’s numeric data types

Data type Bytes used Minimum value (Signed/Unsigned) Maximum value (Signed/Unsigned)

TINYINT 1 −128

0

127

255

SMALLINT 2 −32768

0

32767

65535

MEDIUMINT 3 −8388608

0

8388607

16777215

INT or INTEGER 4 −2147483648

0

2147483647

4294967295

BIGINT 8 −9223372036854775808

0

9223372036854775807

18446744073709551615

FLOAT 4 −3.402823466E+38

(no unsigned)

3.402823466E+38

(no unsigned)

DOUBLE or REAL 8 −1.7976931348623157E+308

(no unsigned)

1.7976931348623157E+308

(no unsigned)

To specify whether a data type is signed or unsigned, use the UNSIGNED qualifier. The
following example creates a table called tablename with a field in it called fieldname of
the data type UNSIGNED INTEGER:

CREATE TABLE tablename (fieldname INT UNSIGNED);

When creating a numeric field, you can also pass an optional number as a parameter,
like this:

CREATE TABLE tablename (fieldname INT(4));

But you must remember that, unlike BINARY and CHAR data types, this parameter does
not indicate the number of bytes of storage to use. It may seem counterintuitive, but
what the number actually represents is the display width of the data in the field when
it is retrieved. It is commonly used with the ZEROFILL qualifier like this:

CREATE TABLE tablename (fieldname INT(4) ZEROFILL);

What this does is cause any numbers with a width of less than four characters to be
padded with one or more zeros, sufficient to make the display width of the field four

Accessing MySQL via the Command Line | 171

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 191 of 528

This adds the new column with the name pages using the UNSIGNED SMALLINT data type,
sufficient to hold a value of up to 65,535—hopefully that’s more than enough for any
book ever published!

And, if you ask MySQL to describe the updated table using the DESCRIBE command, as
follows, you will see the change has been made (see Figure 8-5):

DESCRIBE classics;

Renaming a column

Looking again at Figure 8-5, you may decide that having a column named type can be
confusing, because that is the name used by MySQL to identify data types. Again, no
problem—let’s change its name to category, like this:

ALTER TABLE classics CHANGE type category VARCHAR(16);

Note the addition of VARCHAR(16) on the end of this command. That’s because the
CHANGE keyword requires the data type to be specified, even if you don’t intend to change
it, and VARCHAR(16) was the data type specified when that column was initially created
as type.

Removing a column

Actually, upon reflection, maybe the page count column pages isn’t actually all that
useful for this particular database, so here’s how to remove that column using the
DROP keyword:

ALTER TABLE classics DROP pages;

Figure 8-5. Adding the new pages column and viewing the table

176 | Chapter 8: Introduction to MySQL

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 196 of 528

 INDEX(year),
 PRIMARY KEY (isbn)) ENGINE MyISAM;

Creating a FULLTEXT index

Unlike a regular index, MySQL’s FULLTEXT allows super-fast searches of entire columns
of text. What it does is it stores every word in every data string in a special index that
you can search using “natural language,” in a similar manner to using a search engine.

Actually, it’s not strictly true that MySQL stores all the words in a
FULLTEXT index, because it has a built-in list of more than 500 words that
it chooses to ignore because they are so common that they aren’t very
helpful when searching anyway. This list, called stopwords, includes the,
as, is, of, and so on. The list helps MySQL run much more quickly when
performing a FULLTEXT search and keeps database sizes down. Appen-
dix C contains the full list of stopwords.

Here are some things that you should know about FULLTEXT indexes:

• FULLTEXT indexes can be used only with MyISAM tables, the type used by MySQL’s
default storage engine (MySQL supports at least 10 different storage engines). If
you need to convert a table to MyISAM, you can usually use the MySQL command:
ALTER TABLE tablename ENGINE = MyISAM;.

• FULLTEXT indexes can be created for CHAR, VARCHAR, and TEXT columns only.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a
table is created, or added later using ALTER TABLE (or CREATE INDEX).

• For large data sets, it is much faster to load your data into a table that has no
FULLTEXT index and then create the index than to load data into a table that has an
existing FULLTEXT index.

To create a FULLTEXT index, apply it to one or more records as in Example 8-15, which
adds a FULLTEXT index to the pair of columns author and title in the table classics (this
index is in addition to the ones already created and does not affect them).

Example 8-15. Adding a FULLTEXT index to the classics table

ALTER TABLE classics ADD FULLTEXT(author,title);

You can now perform FULLTEXT searches across this pair of columns. This feature could
really come into its own if you could now add the entire text of these publications to
the database (particularly as they’re out of copyright protection) and they would be
fully searchable. See the section “MATCH...AGAINST” on page 188 for a description
of searches using FULLTEXT.

182 | Chapter 8: Introduction to MySQL

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 202 of 528

Now that you’ve seen the effects of the DISTINCT qualifier, if you typed in Exam-
ple 8-18, you should remove Little Dorrit by entering the commands in Example 8-20.

Example 8-20. Removing the new entry

DELETE FROM classics WHERE title='Little Dorrit';

This example issues a DELETE command for all rows whose title column contains the
string ‘Little Dorrit’.

The WHERE keyword is very powerful, and important to enter correctly; an error could
lead a command to the wrong rows (or have no effect in cases where nothing matches
the WHERE clause). So now we’ll spend some time on that clause, which is the heart and
soul of SQL.

WHERE

The WHERE keyword enables you to narrow down queries by returning only those
where a certain expression is true. Example 8-20 returns only the rows where the col-
umn exactly matches the string ‘Little Dorrit’, using the equality operator =. Exam-
ple 8-21 shows a couple more examples of using WHERE with =.

Example 8-21. Using the WHERE keyword

SELECT author,title FROM classics WHERE author="Mark Twain";
SELECT author,title FROM classics WHERE isbn="9781598184891 ";

Given our current table, the two commands in Example 8-21 display the same results.
But we could easily add more books by Mark Twain, in which case the first line would
display all titles he wrote and the second line would continue (because we know the

Figure 8-10. Selecting data with and without DISTINCT

Indexes | 185

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 205 of 528

In the next chapter, we’ll start looking at how to approach efficient database design,
advanced SQL techniques, and MySQL functions and transactions.

Test Your Knowledge: Questions
Question 8-1

What is the purpose of the semicolon in MySQL queries?

Question 8-2
Which command would you use to view the available databases or tables?

Question 8-3
How would you create a new MySQL user on the local host called newuser with a
password of newpass and access to everything in the database newdatabase?

Question 8-4
How can you view the structure of a table?

Question 8-5
What is the purpose of a MySQL index?

Figure 8-21. The classics table as viewed in phpMyAdmin

198 | Chapter 8: Introduction to MySQL

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 218 of 528

Table 9-2 shows the result of removing the Authors columns from Table 9-1. Already
it looks a lot less cluttered, although there remain duplications that are highlighted.

Table 9-2. The result of stripping the Authors column from Table 9-1

Title ISBN Price Cust. name Cust. address Purch. date

PHP Cookbook 0596101015 44.99 Emma Brown 1565 Rainbow Road, Los Angeles, CA
90014

Mar 03 2009

Dynamic HTML 0596527403 59.99 Darren Ryder 4758 Emily Drive, Richmond, VA
23219

Dec 19 2008

PHP and MySQL 0596005436 44.95 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009

PHP Cookbook 0596101015 44.99 Darren Ryder 4758 Emily Drive, Richmond, VA
23219

Dec 19 2008

Programming
PHP

0596006815 39.99 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

The new Authors table shown in Table 9-3 is small and simple. It just lists the ISBN of
a title along with an author. If a title has more than one author, additional authors get
their own rows. At first you may feel ill at ease with this table, because you can’t tell
which author wrote which book. But don’t worry: MySQL can quickly tell you. All you
have to do is tell it which book you want information for, and MySQL will use its ISBN
to search the Authors table in a matter of milliseconds.

Table 9-3. The new Authors table

ISBN Author

0596101015 David Sklar

0596101015 Adam Trachtenberg

0596527403 Danny Goodman

0596005436 Hugh E Williams

0596005436 David Lane

0596006815 Rasmus Lerdorf

0596006815 Kevin Tatroe

0596006815 Peter MacIntyre

As I mentioned earlier, the ISBN will be the primary key for the Books table, when we
get around to creating that table. I mention that here in order to emphasize that the
ISBN is not, however, the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each author would have a key
to uniquely identify him or her.

So, in the Authors table, the ISBN is just a column for which—for the purposes of
speeding up searches—we’ll probably make a key, but not the primary key. In fact, it

Normalization | 205

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 225 of 528

The results from each call to mysql_result are then incorporated within echo statements
to display one field per line, with an additional line feed between rows. Figure 10-1
shows the result of running this program.

As you may recall, we populated the classics table with five rows in Chapter 8, and
indeed, five rows of data are returned by query.php. But, as it stands, this code is actually
extremely inefficient and slow, because a total of 25 calls are made to the function
mysql_result in order to retrieve all the data, a single cell at a time. Luckily, there is a
much better way of retrieving the data, which is getting a single row at a time using the
mysql_fetch_row function.

In Chapter 9, I talked about First, Second, and Third Normal Form, so
you may have now noticed that the classics table doesn’t satisfy these,
because both author and book details are included within the same ta-
ble. That’s because we created this table before encountering normali-
zation. However, for the purposes of illustrating access to MySQL from
PHP, reusing this table avoids the hassle of typing in a new set of test
data, so we’ll stick with it for the time being.

Figure 10-1. The output from the query.php program in Example 10-5

230 | Chapter 10: Accessing MySQL Using PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 250 of 528

All database connections are automatically closed when PHP exits, so
it doesn’t matter that the connection wasn’t closed in Example 10-5.
But in longer programs, where you may continually open and close da-
tabase connections, you are strongly advised to close each one as soon
as accessing it is complete.

A Practical Example
It’s time to write our first example of inserting data in and deleting it from a MySQL
table using PHP. I recommend that you type in Example 10-8 and save it to your web
development directory using the filename sqltest.php. You can see an example of the
program’s output in Figure 10-2.

Figure 10-2. The output from Example 10-8, sqltest.php

Example 10-8 creates a standard HTML form. The following chapter
explains forms in detail, but in this chapter I take form handling for
granted and just deal with database interaction.

232 | Chapter 10: Accessing MySQL Using PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 252 of 528

is set to “yes” and isbn to the value held in $row[4], which contains the ISBN for the
record. Then a Submit button with the name DELETE RECORD is displayed and the
form is closed. A curly brace then completes the for loop, which will continue until all
records have been displayed.

Finally, you see the definition for the function get_post, which we’ve already looked
at. And that’s it—our first PHP program to manipulate a MySQL database. So, let’s
check out what it can do.

Once you have typed the program in (and corrected any typing errors), try entering the
following data into the various input fields to add a new record for the book Moby
Dick to the database:

Herman Melville
Moby Dick
Fiction
1851
9780199535729

Running the Program
When you have submitted this data using the ADD RECORD button, scroll down to
the bottom of the web page to see the new addition. It should look like Figure 10-3.

Figure 10-3. The result of adding Moby Dick to the database

A Practical Example | 237

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 257 of 528

Now let’s look at how deleting a record works by creating a dummy record. So try
entering just the number 1 in each of the five fields and click on the ADD RECORD
button. If you now scroll down, you’ll see a new record consisting just of 1s. Obviously
this record isn’t useful in this table, so now click on the DELETE RECORD button and
scroll down again to confirm that the record has been deleted.

Assuming that everything worked, you are now able to add and delete
records at will. Try doing this a few times, but leave the main records
in place (including the new one for Moby Dick), as we’ll be using them
later. You could also try adding the record with all 1s again a couple of
times and note the error message that you receive the second time, in-
dicating that there is already an ISBN with the number 1.

Practical MySQL
You are now ready to look at some practical techniques that you can use in PHP to
access the MySQL database, including tasks such as creating and dropping tables, in-
serting, updating, and deleting data, and protecting your database and website from
malicious users. Note that the following examples assume that you’ve created the
login.php program discussed earlier in this chapter.

Creating a Table
Let’s assume that you are working for a wildlife park and need to create a database to
hold details about all the types of cats it houses. You are told that there are nine
families of cats: Lion, Tiger, Jaguar, Leopard, Cougar, Cheetah, Lynx, Caracal, and
Domestic, so you’ll need a column for that. Then each cat has been given a name, so
that’s another column, and you also want to keep track of their ages, which is another.
Of course, you will probably need more columns later, perhaps to hold dietary re-
quirements, inoculations, and other details, but for now that’s enough to get going. A
unique identifier is also needed for each animal, so you also decide to create a column
for that called id.

Example 10-9 shows the code you might use to create a MySQL table to hold this data,
with the main query assignment in bold text.

Example 10-9. Creating a table called cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "CREATE TABLE cats (
 id SMALLINT NOT NULL AUTO_INCREMENT,

238 | Chapter 10: Accessing MySQL Using PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 258 of 528

Updating Data
Changing data that you have already inserted is also quite simple. Did you notice the
spelling of Charly for the Cheetah’s name? Let’s correct that to Charlie, as in Exam-
ple 10-14.

Example 10-14. Renaming Charly the Cheetah to Charlie

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "UPDATE cats SET name='Charlie' WHERE name='Charly'";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

If you run Example 10-13 again, you’ll see that it now outputs the following:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charlie 3

Deleting Data
Growler the Cougar has been transferred to another zoo, so it’s time to remove him
from the database—see Example 10-15.

Example 10-15. Removing Growler the Cougar from the cats table

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "DELETE FROM cats WHERE name='Growler'";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

This uses a standard DELETE FROM query, and when you run Example 10-13, you can
see how the row has been removed by the following output:

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3

242 | Chapter 10: Accessing MySQL Using PHP

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 262 of 528

This occurs when you allow HTML, or more often JavaScript code, to be input by a
user and then displayed back by your website. One place this is common is in a com-
ment form. What most often happens is that a malicious user will try to write code that
steals cookies from your site’s users, allowing him or her to discover username and
password pairs or other information. Even worse, the malicious user might launch an
attack to download a Trojan onto a user’s computer.

But preventing this is as simple as calling the htmlentities function, which strips out
all HTML markup codes and replaces them with a form that displays the characters,
but does not allow a browser to act on them. For example, consider the following
HTML:

<script src='http://x.com/hack.js'> </script><script>hack();</script>

This code loads in a JavaScript program and then executes malicious functions. But if
it is first passed through htmlentities, it will be turned into the following, totally
harmless string:

<script src='http://x.com/hack.js'>
 </script><script>hack();</script>

Therefore, if you are ever going to display anything that your users enter, either im-
mediately or after first storing it in database, you need to first sanitize it with
htmlentities. To do this, I recommend you create a new function, like the first one in
Example 10-22, which can sanitize for both SQL and XSS injections.

Example 10-22. Functions for preventing both SQL and XSS injection attacks

<?php
function mysql_entities_fix_string($string)
{
 return htmlentities(mysql_fix_string($string));
}

function mysql_fix_string($string)
{
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return mysql_real_escape_string($string);
}
?>

The mysql_entities_fix_string function first calls mysql_fix_string and then passes
the result through htmlentities before returning the fully sanitized string. Exam-
ple 10-23 shows your new “ultimate protection” version of Example 10-19.

Example 10-23. How to safely access MySQL and prevent XSS attacks

<?php
$user = mysql_entities_fix_string($_POST['user']);
$pass = mysql_entities_fix_string($_POST['pass']);
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

function mysql_entities_fix_string($string)

Practical MySQL | 249

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 269 of 528

Example 11-1. formtest.php—a simple PHP form handler

<?php // formtest.php
echo <<<_END
<html>
 <head>
 <title>Form Test</title>
 </head>
 <body>
 <form method="post" action="formtest.php" />
 What is your name?
 <input type="text" name="name" />
 <input type="submit" />
 </form>
 </body>
</html>
_END;
?>

The first thing to notice about this example is that, as you have already seen in this
book, rather than dropping in and out of PHP code, the echo <<<_END..._END construct
is used whenever multiline HTML must be output.

Inside of this multiline output is some standard code for commencing an HTML docu-
ment, displaying its title, and starting the body of the document. This is followed by
the form, which is set to send its data using the post method to the PHP program
formtest.php, which is the name of the program itself.

The rest of the program just closes all the items it opened: the form, the body of the
HTML document, and the PHP echo <<<_END statement. The result of opening this
program in a web browser can be seen in Figure 11-1.

Figure 11-1. The result of opening formtest.php in a web browser

252 | Chapter 11: Form Handling

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 272 of 528

Retrieving Submitted Data
Example 11-1 is only one part of the multipart form handling process. If you enter a
name and click on the Submit Query button, absolutely nothing will happen other than
the form being redisplayed. So now it’s time to add some PHP code to process the data
submitted by the form.

Example 11-2 expands on the previous program to include data processing. Type it in,
or modify formtest.php by adding in the new lines, save it as formtest2.php, and try the
program for yourself. The result of running this program and entering a name can be
seen in Figure 11-2.

Figure 11-2. formtest.php with data handling

Example 11-2. Updated version of formtest.php

<?php // formtest2.php
if (isset($_POST['name'])) $name = $_POST['name'];
else $name = "(Not entered)";

echo <<<_END
<html>
 <head>
 <title>Form Test</title>
 </head>
 <body>
 Your name is: $name

 <form method="post" action="formtest2.php">
 What is your name?
 <input type="text" name="name" />
 <input type="submit" />
 </form>
 </body>
</html>
_END;
?>

Retrieving Submitted Data | 253

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 273 of 528

The only changes are a couple of lines at the start that check the $_POST associative array
for the field name having been submitted. The previous chapter introduced the
$_POST associative array, which contains an element for each field in an HTML form.
In Example 11-2, the input name used was name and the form method was post, so
element name of the $_POST array contains the value in $_POST['name'].

The PHP isset function is used to test whether $_POST['name'] has been assigned a
value. If nothing was posted, the program assigns the value “(Not entered)”; otherwise,
it stores the value that was entered. Then a single line has been added after the
<body> statement to display that value, which is stored in $name.

register_globals: An Old Solution Hangs On
Before security became such a big issue, the default behavior of PHP was to assign the
$_POST and $_GET arrays directly to PHP variables. For example, there would be no need
to use the instruction $name=$_POST['name']; because $name would already be given that
value automatically by PHP at the program start!

Initially (prior to version 4.2.0 of PHP), this seemed a very useful idea that saved a lot
of extra code-writing, but this practice has now been discontinued and the feature is
disabled by default. Should you find register_globals enabled on a production web
server for which you are developing, you should urgently ask your server administrator
to disable it.

So why disable register_globals? It enables anyone to enter a GET input on the tail of
a URL, like this: http://myserver.com?override=1, and if your code were ever to use the
variable $override and you forgot to initialize it (for example, through $override=0;),
the program could be compromised by such an exploit.

In fact, because many installations on the Web remain with this gaping hole, I advise
you to always initialize every variable you use, just in case your code will ever run on
such a system. Initialization is also good programming practice, because you can com-
ment each initialization to remind yourself and other programmers what a variable is
for.

If you ever find yourself maintaining code that seems to assume values
for certain variables for no apparent reason, you can make an educated
guess that the programmer wrote the code using register_globals, and
that these values are intended to be extracted from a POST or GET. If so,
I recommend you rewrite the code to load these variables explicitly from
the correct $_POST or $_GET array.

Default Values
Sometimes it’s convenient to offer your site visitors a default value in a web form. For
example, suppose you put up a loan repayment calculator widget on a real estate

254 | Chapter 11: Form Handling

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 274 of 528

One value submitted Two values submitted Three values submitted

$ice[0] => Chocolate

$ice[1] => Strawberry

If $ice is an array, the PHP code to display its contents is quite simple and might look
like this:

foreach($ice as $item) echo "$item
";

This uses the standard PHP foreach construct to iterate through the array $ice and pass
each element’s value into the variable $item, which is then displayed using the echo
command. The
 is just an HTML formatting device, to force a new line after each
flavor in the display.

By default, checkboxes are square.

Radio Buttons
Radio buttons are named after the push-in preset buttons found on many older radios,
where any previously depressed button pops back up when another is pressed. They
are used when you want only a single value to be returned from a selection of two or
more options. All the buttons in a group must use the same name and, because only a
single value is returned, you do not have to pass an array.

For example, if your website offers a choice of delivery times for items purchased from
your store, you might use HTML like that in Example 11-6 (see Figure 11-5 to see how
it displays).

Figure 11-5. Selecting a single value with radio buttons

Example 11-6. Using radio buttons

8am-Noon<input type="radio" name="time" value="1" />|
Noon-4pm<input type="radio" name="time" value="2" checked="checked" />|
 4pm-8pm<input type="radio" name="time" value="3" />

Retrieving Submitted Data | 259

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 279 of 528

On the other hand, if $c is found to have a value, a complementary operation is per-
formed to convert the value of $c from Celsius to Fahrenheit and assign the result to
$f. The formula used is Fahrenheit = (9 / 5) × (Celsius + 32). As with the previous section,
the string $out is then set to contain a message about the conversion.

In both conversions, the PHP intval function is called to convert the result of the
conversion to an integer value. It’s not necessary, but looks better.

With all the arithmetic done, the program now outputs the HTML, which starts with
the basic head and title and then contains some introductory text before displaying the
value of $out. If no temperature conversion was made, $out will have a value of NULL
and nothing will be displayed, which is exactly what we want when the form hasn’t yet
been submitted. But if a conversion was made, $out contains the result, which is
displayed.

After this, we come to the form, which is set to submit using the POST method to the
file convert.php (the program itself). Within the form, there are two inputs for either a
Fahrenheit or Celsius value to be entered. A submit button with the text “Convert” is
then displayed and the form is closed.

After outputting the HTML to close the document, we come finally to the function
sanitizeString from Example 11-9.

All the examples in this chapter have used the POST method to send form
data. I recommend this, as the neatest and most secure method. How-
ever, the forms can easily be changed to use the GET method, as long as
values are fetched from the $_GET array instead of the $_POST array. Rea-
sons to do this might include making the result of a search bookmark-
able or directly linkable from another page.

The next chapter will show you how you can use the Smarty templating engine to
provide a framework for separating your application code from the way your content
is presented to users.

Test Your Knowledge: Questions
Question 11-1

Form data can be submitted using either the POST or the GET method. Which asso-
ciative arrays are used to pass this data to PHP?

Question 11-2
What is register_globals and why is it a bad idea?

Question 11-3
What is the difference between a text box and a text area?

266 | Chapter 11: Form Handling

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 286 of 528

Note the penultimate $smarty->assign command. This creates a Smarty variable called
title and assigns it the string value “Test Web Page”. You’ll see why shortly.

Once you have typed the program in, save it using the filename smarty.php into the
temp directory you created earlier.

Creating Templates
Now you need to write a simple Smarty template file to test whether everything is
working, so type in Example 12-2 and save it in a file named index.tpl in the temp/
smarty/templates directory you created earlier.

Example 12-2. The index.tpl template file

<html>
 <head>
 <title>{$title}</title>
 </head>
 <body>
 This is a Smarty Test
 </body>
</html>

As you can see, this is simply an HTML file with a .tpl file extension. But note the use
of the Smarty variable {$title} on the third line. This is the same variable that was
defined in Example 12-1. Smarty will substitute the value of the variable instead of the
text in Example 12-2, because of the surrounding curly braces {} (see Figure 12-1).

Figure 12-1. The output from index.tpl in Example 12-2

A Practical Example
Let’s take the program sqltest.php from Example 10-8 in Chapter 10 and rewrite it to
use Smarty. This will be a two-part process: one part for the program code and one for
the Smarty presentation layer. Example 12-3 is the revised program. Once you have
typed it in, save it into the temp directory that you created earlier using the filename
smartytest.php.

272 | Chapter 12: Templating with Smarty

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 292 of 528

function mysql_fix_string($string)
{
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return mysql_real_escape_string($string);
}
?>

As you might expect at this point in the book, some of the examples are starting to get
quite a bit longer. But don’t be put off. The final 10 lines are simply Example 10-31
from Chapter 10. They are there to sanitize the user input—very important.

The only lines to really concern yourself with at this point start with the assigning of
two variables $un_temp and $pw_temp using the submitted username and password,
highlighted in bold text. Next, a query is issued to MySQL to look up the user
$un_temp and, if a result is returned, to assign the first row to $row. (Because usernames
are unique, there will be only one row.) Then the two salts are created in $salt1 and
$salt2, which are then added before and after the submitted password $pw_temp. This
string is then passed to the md5 function, which returns a 32-character hexadecimal
value in $token.

Now all that’s necessary is to check $token against the value stored in the database,
which happens to be in the fourth column—which is column 3 when starting from 0.
So $row[3] contains the previous token calculated for the salted password. If the two
match, a friendly welcome string is output, calling the user by his or her first name (see
Figure 13-4). Otherwise, an error message is displayed. As mentioned before, the error
message is the same regardless of whether such a username exists, as this provides
minimal information to potential hackers or password guessers.

Figure 13-4. Bill Smith has now been authenticated

You can try this out for yourself by calling up the program in your browser and entering
a username of “bsmith” and password of “mysecret” (or “pjones” and “acrobat”), the
values that were saved in the database by Example 13-3.

288 | Chapter 13: Cookies, Sessions, and Authentication

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 308 of 528

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 318 of 528

Using Scripts Within a Document Head
In addition to placing a script within the body of a document, you can put it in the
<head> section, which is the ideal place if you wish to execute a script when a page
loads. If you place critical code and functions there, you can also ensure that they are
ready to use immediately by any other script sections in the document that rely on them.

Another reason for placing a script in the head is to enable JavaScript to write things
such as meta tags into the head section, because the location of your script is the part
of the document it writes to by default.

Older and Nonstandard Browsers
If you need to support browsers that do not offer scripting, you will need to use the
HTML comment tags (<!-- and -->) to prevent them from encountering script code
that they should not see. Example 14-2 shows how you add them to your script code.

Example 14-2. The “Hello World” example modified for non-JavaScript browsers

<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript"><!--
 document.write("Hello World")

Figure 14-1. JavaScript, enabled and working

Figure 14-2. JavaScript has been disabled

JavaScript and HTML Text | 301

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 321 of 528

Including script files is the preferred way for you to use third-party JavaScript files on
your website.

It is possible to leave out the type="text/javascript" parameters; all
modern browsers default to assuming that the script contains
JavaScript.

Debugging JavaScript Errors
When learning JavaScript, it’s important to be able to track typing or other coding
errors. Unlike PHP, which displays error messages in the browser, JavaScript error
messages are handled differently, and in a way that changes according to the browser
used. Table 14-1 lists how to access JavaScript error messages in each of the five most
commonly used browsers.

Table 14-1. Accessing JavaScript error messages in different browsers

Browser How to access JavaScript error messages

Apple Safari Safari does not have an Error Console enabled by default, so the Firebug Lite JavaScript module will do
what you need. To use it, add the following line of code somewhere before the <body> tag in a document:

<script src='http://tinyurl.com/fblite'></script>

Google Chrome Click the menu icon that looks like a page with a corner turned, then select Developer→JavaScript
Console. You can also use the following shortcut: Ctrl-Shift-J on a PC or Command-Shift-J on a Mac.

Microsoft
Internet Explorer

Select Tools→Internet Options→Advanced, then uncheck the Disable Script Debugging box and check
the Display a Notification about Every Script Error box.

Mozilla Firefox Select Tools→Error Console or use this shortcut: Ctrl-Shift-J on a PC or Command-Shift-J on a Mac.

Opera Select Tools→Advanced→Error Console.

Safari Users: although I have shown a way for you to create an Error
Console for JavaScript, I strongly recommend that you use a different
browser, if at all possible, as this method is little more than a work-
around. On a PC, you could try Google Chrome, which uses the same
WebKit engine as Safari. On a Mac, until Chrome has been ported to
Mac OS (a project that is still underway as I write), I suggest that you
try Firefox for debugging your JavaScript.

To try out whichever Error Console you are using, let’s create a script with a small error.
Example 14-3 is much the same as Example 14-1, but the final double quotation mark
has been left off the end of the string “Hello World”—a common syntax error.

JavaScript and HTML Text | 303

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 323 of 528

However, when you wish to place more than one statement on a line, they must be
separated with semicolons, like this:

x += 10; y -= 5; z = 0

You can normally leave the final semicolon off, because the new line terminates the
final statement.

There are exceptions to the semicolon rule. If you write JavaScript
bookmarklets, or end a statement with a variable or function reference
and the first character of the line below is a left parenthesis or bracket,
you must remember to append a semicolon or the JavaScript will fail.
So, if in doubt, use a semicolon.

Variables
No particular character identifies a variable in JavaScript as the dollar sign does in PHP.
Instead, variables use the following naming rules:

• A variable may include only the letters a-z, A-Z, 0-9, the $ symbol, and the
underscore (_).

• No other characters such as spaces or punctuation are allowed in a variable name.

• The first character of a variable name can be only a-z, A-Z, $, or _ (no numbers).

• Names are case-sensitive. Count, count, and COUNT are all different variables.

• There is no set limit on variable name lengths.

And yes, you’re right, that is the $ sign there in that list. It is allowed by JavaScript and
may be the first character of a variable or function name. Although I don’t recommend
keeping the $ signs, it means that you can port a lot of PHP code more quickly to
JavaScript that way.

String Variables
JavaScript string variables should be enclosed in either single or double quotation
marks, like this:

greeting = "Hello there"
warning = 'Be careful'

You may include a single quote within a double-quoted string or a double quote within
a single-quoted string. But a quote of the same type must be escaped using the backslash
character, like this:

greeting = "\"Hello there\" is a greeting"
warning = '\'Be careful\' is a warning'

To read from a string variable, you can assign it to another one, like this:

newstring = oldstring

306 | Chapter 14: Exploring JavaScript

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 326 of 528

Table 15-2. The precedence of JavaScript operators (high to low)

Operator(s) Type(s)

() [] . Parentheses, call, and member

++ -- Increment/decrement

+ - ~ ! Unary, bitwise, and logical

* / % Arithmetic

+ - Arithmetic and string

<< >> >>> Bitwise

< > <= >= Comparison

== != === !== Comparison

&& Logical

|| Logical

? : Ternary

= += -= *= /= %= <<= >>= >>>= &= ^= |= Assignment

, Sequential evaluation

Associativity
Most JavaScript operators are processed in order from left to right in an equation. But
some operators require processing from right to left instead. The direction of processing
is called the operator’s associativity.

This associativity becomes important in cases where you do not explicitly force prec-
edence. For example, look at the following assignment operators, by which three var-
iables are all set to the value 0:

level = score = time = 0

This multiple assignment is possible only because the rightmost part of the expression
is evaluated first and then processing continues in a right-to-left direction. Table 15-3
lists all the operators that have right-to-left associativity.

Table 15-3. Operators with right-to-left associativity

Operator Description

New Create a new object

++ -- Increment and decrement

+ - ~ ! Unary and bitwise

? : Conditional

= *= /= %= += -= <<= >>= >>>= &= ^= |= Assignment

322 | Chapter 15: Expressions and Control Flow in JavaScript

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 342 of 528

browser (although it is in all other major browsers). Therefore, we can use try and
catch to trap this case and do something else if the function is not available. Exam-
ple 15-12 shows how.

Example 15-12. Trapping an error with try and catch

<script>
try
{
 request = new XMLHTTPRequest()
}
catch(err)
{
 // Use a different method to create an XML HTTP Request object
}
</script>

I won’t go into how we implement the missing object in Internet Explorer here, but
you can see how the system works. There’s also another keyword associated with try
and catch called finally that is always executed, regardless of whether an error occurs
in the try clause. To use it, just add something like the following statements after a
catch statement:

finally
{
 alert("The 'try' clause was encountered")
}

Conditionals
Conditionals alter program flow. They enable you to ask questions about certain things
and respond to the answers you get in different ways. There are three types of non-
looping conditionals: the if statement, the switch statement, and the ? operator.

The if Statement
Several examples in this chapter have already made use of if statements. The code
within such a statement is executed only if the given expression evaluates to true.
Multiline if statements require curly braces around them, but as in PHP, you can omit
the braces for single statements. Therefore, the following statements are valid:

if (a > 100)
{
 b=2
 document.write("a is greater than 100")
}

if (b == 10) document.write("b is equal to 10")

328 | Chapter 15: Expressions and Control Flow in JavaScript

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 348 of 528

Example 15-13. A multiline if...else if... statement

<script>
if (page == "Home") document.write("You selected Home")
else if (page == "About") document.write("You selected About")
else if (page == "News") document.write("You selected News")
else if (page == "Login") document.write("You selected Login")
else if (page == "Links") document.write("You selected Links")
</script>

But using a switch construct, the code could look like Example 15-14.

Example 15-14. A switch construct

<script>
switch (page)
{
 case "Home": document.write("You selected Home")
 break
 case "About": document.write("You selected About")
 break
 case "News": document.write("You selected News")
 break
 case "Login": document.write("You selected Login")
 break
 case "Links": document.write("You selected Links")
 break
}
</script>

The variable page is mentioned only once at the start of the switch statement. Thereafter
the case command checks for matches. When one occurs, the matching conditional
statement is executed. Of course, a real program would have code here to display or
jump to a page, rather than simply telling the user what was selected.

Breaking out

As you can see in the Example 15-14, just as with PHP, the break command allows your
code to break out of the switch statement once a condition has been satisfied. Remem-
ber to include the break unless you want to continue executing the statements under
the next case.

Default action

When no condition is satisfied, you can specify a default action for a switch statement
using the default keyword. Example 15-15 shows a code snippet that could be inserted
into Example 15-14.

Example 15-15. A default statement to add to Example 15-12

default: document.write("Unrecognized selection")
 break

330 | Chapter 15: Expressions and Control Flow in JavaScript

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 350 of 528

This script outputs the following:

Counter: 0
Counter: 1
Counter: 2
Counter: 3
Counter: 4

If the variable counter were not incremented within the loop, it is quite
possible that some browsers could become unresponsive due to a never-
ending loop, and the page may not even be easy to terminate with Escape
or the Stop button. So be careful with your JavaScript loops.

do...while Loops
When you require a loop to iterate at least once before any tests are made, use a
do...while loop, which is similar to a while loop, except that the test expression is
checked only after each iteration of the loop. So, to output the first seven results in the
seven times table, you could use code such as that in Example 15-18.

Example 15-18. A do...while loop

<script>
count = 1
do
{
 document.write(count + " times 7 is " + count * 7 + "
")
} while (++count <= 7)
</script>

As you might expect, this loop outputs the following:

1 times 7 is 7
2 times 7 is 14
3 times 7 is 21
4 times 7 is 28
5 times 7 is 35
6 times 7 is 42
7 times 7 is 49

for Loops
A for loop combines the best of all worlds into a single looping construct that allows
you to pass three parameters for each statement:

• An initialization expression

• A condition expression

• A modification expression

These are separated by semicolons, like this: for (expr1; expr2; expr3). At the start of
the first iteration of the loop, the initialization expression is executed. In the case of the

332 | Chapter 15: Expressions and Control Flow in JavaScript

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 352 of 528

Example 16-2. Modifying the function to use the arguments array

<script>
function displayItems()
{
 for (j = 0 ; j < displayItems.arguments.length ; ++j)
 document.write(displayItems.arguments[j] + "
")
}
</script>

Note the use of the length property, which you already encountered in the previous
chapter, and also how the array displayItems.arguments is referenced using the variable
j as an offset into it. I also chose to keep the function short and sweet by not surrounding
the contents of the for loop in curly braces, as it contains only a single statement.

Using this technique you now have a function that can take as many (or as few) argu-
ments as you like and act on each argument as you desire.

Returning a Value
Functions are not used just to display things. In fact, they are mostly used to perform
calculations or data manipulation and then return a result. The function fixNames in
Example 16-3 uses the arguments array (discussed in the previous section) to take a
series of strings passed to it and return them as a single string. The “fix” it performs is
to convert every character in the arguments to lowercase except for the first character
of each argument, which is set to a capital letter.

Example 16-3. Cleaning up a full name

<script>
document.write(fixNames("the", "DALLAS", "CowBoys"))

function fixNames()
{
 var s = ""

 for (j = 0 ; j < fixNames.arguments.length ; ++j)
 s += fixNames.arguments[j].charAt(0).toUpperCase() +
 fixNames.arguments[j].substr(1).toLowerCase() + " "

 return s.substr(0, s.length-1)
}
</script>

When called with the parameters “the”, “DALLAS”, and “CowBoys”, for example, the
function returns the string “The Dallas Cowboys”. Let’s walk through the function.

The function first initializes the temporary (and local) variable s to the empty string.
Then a for loop iterates through each of the passed parameters, isolating the parame-
ter’s first character using the charAt method and converting it to uppercase with the

JavaScript Functions | 339

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 359 of 528

Assuming the data supplied earlier, this code would display:

Forename: Wolfgang
Username: w.a.mozart
Password: composer

The prototype Keyword
The prototype keyword can save you a lot of memory. In the User class, every instance
will contain the three properties and the method. Therefore, if you have 1,000 of these
objects in memory, the method showUser will also be replicated 1,000 times. However,
because the method is identical in every case, you can specify that new objects should
refer to a single instance of the method instead of creating a copy of it. So, instead of
using the following in a class constructor:

this.showUser = function()

you could replace it with this:

User.prototype.showUser = function()

Example 16-7 shows what the new constructor would look like.

Example 16-7. Declaring a class using the prototype keyword for a method

<script>
function User(forename, username, password)
{
 this.forename = forename
 this.username = username
 this.password = password

 User.prototype.showUser = function()
 {
 document.write("Forename: " + this.forename + "
")
 document.write("Username: " + this.username + "
")
 document.write("Password: " + this.password + "
")
 }
}
</script>

This works because all functions have a prototype property, designed to hold properties
and methods that are not replicated in any objects created from a class. Instead, they
are passed to its objects by reference.

This means that you can add a prototype property or method at any time and all objects
(even those already created) will inherit it, as the following statements illustrate:

User.prototype.greeting = "Hello"
document.write(details.greeting)

The first statement adds the prototype property of greeting with a value of “Hello” to
the class User. In the second line, the object details, which has already been created,
correctly displays this new property.

344 | Chapter 16: JavaScript Functions, Objects, and Arrays

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 364 of 528

You can also add to or modify methods in a class, as the following statements illustrate:

User.prototype.showUser = function() { document.write("Name " +
this.forename + " User " + this.username + " Pass " + this.password) }
details.showUser()

You might add these lines to your script in a conditional statement (such as if), so they
run if user activities cause you to decide you need a different showUser method. After
these lines run, even if the object details has been created already, further calls to
details.showUser will run the new function. The old definition of showUser has been
erased.

Static methods and properties

When reading about PHP objects, you learned that classes can have static properties
and methods as well as properties and methods associated with a particular instance
of a class. JavaScript also supports static properties and methods, which you can con-
veniently store and retrieve from the class’s prototype. Thus, the following statements
set and read a static string from User:

User.prototype.greeting = "Hello"
document.write(User.prototype.greeting)

Extending JavaScript objects

The prototype keyword even lets you add functionality to a built-in object. For example,
suppose that you would like to add the ability to replace all spaces in a string with
nonbreaking spaces in order to prevent it from wrapping around. This can be done by
adding a prototype method to JavaScript’s default String object definition, like this:

String.prototype.nbsp =
 function() { return this.replace(/ /g, ' ') }

Here the replace method is used with a regular expression (see Chapter 17) to find and
replace all single spaces with the string “ ”. If you then enter the following
command:

document.write("The quick brown fox".nbsp())

It will output the string “The quick brown fox”. Or here’s a
method you can add that will trim leading and trailing spaces from a string (once again
using a regular expression):

String.prototype.trim =
 function() { return this.replace(/^\s+|\s+$/g, '') }

If you issue the following statement the output will be the string “Please trim me” (with
the leading and trailing spaces removed).

document.write(" Please trim me ".trim())

JavaScript Objects | 345

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 365 of 528

JavaScript Arrays
Array handling in JavaScript is very similar to PHP, although the syntax is a little dif-
ferent. Nevertheless, given all you have already learned about arrays, this section should
be relatively straightforward for you.

Numeric Arrays
To create a new array, use the following syntax:

arrayname = new Array()

Or you can use the shorthand form, as follows:

arrayname = []

Assigning element values

In PHP, you could add a new element to an array by simply assigning it without spec-
ifying the element offset, like this:

$arrayname[] = "Element 1";
$arrayname[] = "Element 2";

But in JavaScript you use the push method to achieve the same thing, like this:

arrayname.push("Element 1")
arrayname.push("Element 2")

This allows you to keep adding items to an array without having to keep track of the
number of items. When you need to know how many elements are in an array, you can
use the length property, like this:

document.write(arrayname.length)

Alternatively, if you wish to keep track of the element locations yourself and place them
in specific locations, you can use syntax such as this:

arrayname[0] = "Element 1"
arrayname[1] = "Element 2"

Example 16-8 shows a simple script that creates an array, loads it with some values,
and then displays them.

Example 16-8. Creating, building, and printing an array

<script>
numbers = []
numbers.push("One")
numbers.push("Two")
numbers.push("Three")

for (j = 0 ; j < numbers.length ; ++j)
 document.write("Element " + j + " = " + numbers[j] + "
")
</script>

346 | Chapter 16: JavaScript Functions, Objects, and Arrays

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 366 of 528

The third and fourth sections are a little more complicated by using a function to com-
pare the relationships between a and b. The function doesn’t have a name, because it’s
used just in the sort. You have already seen the function named function to create an
anonymous function; we used it to define a method in a class (the showUser method).

Here, function creates an anonymous function meeting the needs of the sort method.
If the function returns a value greater than zero, the sort assumes that a comes before
b. If the function returns a value less than zero, the sort assumes that b comes before
a. The sort runs this function across all the values in the array to determine their order.

By manipulating the value returned (a - b in contrast to b - a), the third and fourth
sections of Example 16-16 choose between an ascending numerical sort and a descending
numerical sort.

And, believe it or not, this represents the end of your introduction to JavaScript. You
should therefore now have a core knowledge of the three main technologies covered in
this book. The next chapter will look at some advanced techniques used across these
technologies, such as pattern matching and input validation.

Test Your Knowledge: Questions
Question 16-1

Are JavaScript functions and variable names case-sensitive or -insensitive?

Question 16-2
How can you write a function that accepts and processes an unlimited number of
parameters?

Question 16-3
Name a way to return multiple values from a function.

Question 16-4
When defining a class, what keyword is used to refer to the current object?

Question 16-5
Do all the methods of a class have to be defined within the class definition?

Question 16-6
What keyword is used to create an object?

Question 16-7
How can a property or method be made available to all objects in a class without
replicating the property or method within the object?

Question 16-8
How can you create a multidimensional array?

Test Your Knowledge: Questions | 353

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 373 of 528

How it works

Let’s look at how this document is made up. The first three lines set up the document
and use a little CSS to make the form look a little less plain. The parts of the document
related to JavaScript come next and are show in bold.

Between the <script ...> and </script> tags lies a single function called validate that
itself calls up six other functions to validate each of the form’s input fields. We’ll get
to these functions shortly. For now I’ll just explain that they return either an empty
string if a field validates, or an error message if it fails. If there are any errors, the final
line of the script pops up an alert box to display them.

Upon passing validation, the validate function returns a value of true; otherwise, it
returns false. The return values from validate are important, because if it returns
false, the form is prevented from being submitted. This allows the user to close the
alert pop up and make changes. If true is returned, no errors were encountered in the
form’s fields and so the form is allowed to be submitted.

The second part of this example features the HTML for the form with each field and
its name placed within its own row of a table. This is pretty straightforward HTML,
with the exception of the onSubmit="return validate(this)" statement within the
opening <form ...> tag. Using onSubmit, you can cause a function of your choice to be
called when a form is submitted. That function can perform some checking and return
a value of either true or false to signify whether the form should be allowed to be
submitted.

Figure 17-1. The output from Example 17-1

Validating User Input with JavaScript | 357

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 377 of 528

 return ""
}

function validateEmail(field) {
 if (field == "") return "No Email was entered.\n"
 else if (!((field.indexOf(".") > 0) &&
 (field.indexOf("@") > 0)) ||
 /[^a-zA-Z0-9.@_-]/.test(field))
 return "The Email address is invalid.\n"
 return ""
}
</script></body></html>

We’ll go through each of these functions in turn, starting with validateForename so you
can see how validation works.

Validating the forename

validateForename is quite a short function that accepts the parameter field, which is
the value of the forename passed to it by the validate function.

If this value is an empty string, an error message is returned; otherwise, an empty string
is returned to signify that no error was encountered.

If the user entered spaces in this field, it would be accepted by validateForename, even
though it’s empty for all intents and purposes. You can fix this by adding an extra
statement to trim whitespace from the field before checking whether it’s empty, use a
regular expression to make sure there’s something besides whitespace in the field, or—
as I do here—just let the user make the mistake and allow the PHP program to catch
it on the server.

Validating the surname

The validateSurname function is almost identical to validateForename in that an error
is returned only if the surname supplied was the empty string. I chose not to limit the
characters allowed in either of the name fields to allow for non-English and accented
characters, etc.

Validating the username

The validateUsername function is a little more interesting, because it has a more com-
plicated job. It has to allow only the characters a-z, A-Z, 0-9, _ and -, and ensure that
usernames are at least five characters long.

The if...else statements commence by returning an error if field has not been filled
in. If it’s not the empty string, but is less than five characters in length, another error
message is returned.

Then the JavaScript test function is called, passing a regular expression (which matches
any character that is not one of those allowed) to be matched against field (see the

Validating User Input with JavaScript | 359

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 379 of 528

If you want to match the dot character itself (.), you have to escape it by placing a
backslash (\) before it, because otherwise it’s a metacharacter and matches anything.
As an example, suppose you want to match the floating-point number “5.0”. The reg-
ular expression is:

/5\.0/

The backslash can escape any metacharacter, including another backslash (in case
you’re trying to match a backslash in text). However, to make things a bit confusing,
you’ll see later how backslashes sometimes give the following character a special
meaning.

We just matched a floating-point number. But perhaps you want to match “5.” as well
as “5.0”, because both mean the same thing as a floating-point number. You also want
to match “5.00”, “5.000”, and so forth—any number of zeros is allowed. You can do
this by adding an asterisk, as you’ve seen:

/5\.0*/

Grouping Through Parentheses
Suppose you want to match powers of increments of units, such as kilo, mega, giga,
and tera. In other words, you want all the following to match:

1,000
1,000,000
1,000,000,000
1,000,000,000,000
...

The plus sign works here, too, but you need to group the string “,000” so the plus sign
matches the whole thing. The regular expression is:

/1(,000)+ /

The parentheses mean “treat this as a group when you apply something such as a plus
sign.” 1,00,000 and 1,000,00 won’t match because the text must have a 1 followed by
one or more complete groups of a comma followed by three zeros.

The space after the + character indicates that the match must end when a space is
encountered. Without it, 1,000,00 would incorrectly match, because only the first
1,000 would be taken into account, and the remaining 00 would be ignored. Requiring
a space afterward ensures that matching will continue right through to the end of a
number.

Character Classes
Sometimes you want to match something fuzzy, but not so broad that you want to use
a dot. Fuzziness is the great strength of regular expressions: they allow you to be as
precise or vague as you want.

Regular Expressions | 363

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 383 of 528

Metacharacters Description

\W Matches a nonword character (anything but a-z, A-Z, 0-9, and _)

\x x (useful if x is a metacharacter, but you really want x)

{n} Matches exactly n times

{n,} Matches n times or more

{min,max} Matches at least min and at most max times

Provided with this table, and looking again at the expression /[^a-zA-Z0-9_]/, you can
see that it could easily be shortened to /[^\w]/ because the single metacharacter \w
(with a lowercase w) specifies the characters a-z, A-Z, 0-9, and _.

In fact, we can be more clever than that, because the metacharacter \W (with an upper-
case W) specifies all characters except for a-z, A-Z, 0-9, and _. Therefore we could also
drop the ^ metacharacter and simply use /[\W]/ for the expression.

To give you more ideas of how this all works, Table 17-2 shows a range of expressions
and the patterns they match.

Table 17-2. Some example regular expressions

Example Matches

r The first r in The quick brown

rec[ei][ei]ve Either of receive or recieve (but also receeve or reciive)

rec[ei]{2}ve Either of receive or recieve (but also receeve or reciive)

rec(ei)|(ie)ve Either of receive or recieve (but not receeve or reciive)

cat The word cat in I like cats and dogs

cat|dog Either of the words cat or dog in I like cats and dogs

\. . (the \ is necessary because . is a metacharacter)

5\.0* 5., 5.0, 5.00, 5.000, etc.

a-f Any of the characters a, b, c, d, e or f

cats$ Only the final cats in My cats are friendly cats

^my Only the first my in my cats are my pets

\d{2,3} Any two or three digit number (00 through 999)

7(,000)+ 7,000;7,000,000; 7,000,000,000; 7,000,000,000,000; etc.

[\w]+ Any word of one or more characters

[\w]{5} Any five-letter word

368 | Chapter 17: JavaScript and PHP Validation and Error Handling

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 388 of 528

• Konqueror 3.0

• Nokia S60

• Google Chrome 1.0

• Opera 8.0

Example 18-1. A cross-browser Ajax function

<script>
function ajaxRequest()
{
 try // Non IE Browser?
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try // IE 6+?
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try // IE 5?
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3) // There is no Ajax Support
 {
 request = false
 }
 }
 }
 return request
}
</script>

You may remember the introduction to error handling in the previous chapter, using
the try...catch construct. Example 18-1 is a perfect illustration of its utility, because
it uses the try keyword to execute the non-IE Ajax command, and upon success, jumps
on to the final return statement, where the new object is returned.

Otherwise, a catch traps the error and the subsequent command is executed. Again,
upon success, the new object is returned; otherwise, the final of the three commands
is tried. If that attempt fails, then the browser doesn’t support Ajax and the request
object is set to false; otherwise, the object is returned. So there you have it—a cross-
browser Ajax request function that you may wish to add to your library of useful Java-
Script functions.

OK, so now you have a means of creating an XMLHttpRequest object, but what can you
do with these objects? Well, each one comes with a set of properties (variables) and
methods (functions), which are detailed in Tables 18-1 and 18-2.

Using XMLHttpRequest | 379

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 399 of 528

Question 18-10
What are the main differences between an Ajax GET and POST request?

See the section “Chapter 18 Answers” on page 450 in Appendix A for the answers to
these questions.

392 | Chapter 18: Using Ajax

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 412 of 528

Figure 19-1. The YUI documentation main page

Figure 19-2. The build folder, which contains the .js framework files

Using YUI | 395

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 415 of 528

function failureHandler(o) {
 document.getElementById('info').innerHTML =
 o.status + " " + o.statusText
}
</script></body></html>

I’m sure you’ll agree that this is very simple indeed. After setting up the web page,
displaying a heading, and creating the DIV in which to place the Ajax response, the
program loads three YUI framework files. The rest of the document (less than 10 lines
of code) is the Ajax, which does the following:

1. Place the URL to fetch, yahoo.com, in the variable url.

2. Create the callback object. This is an associative array that points to the handlers
to be called in case of the success or failure of the call.

3. Place the Ajax call, which is a GET request to the URL urlget.php?url=yahoo.com.

You may recall that we wrote urlget.php in the previous chapter (Example 18-5) and,
as it doesn’t require modifying, I won’t repeat it here. Suffice it to say that the program
fetches the HTML page at http://yahoo.com and returns it to the Ajax method.

All that remains are the two functions for success or failure of the call. The success
function, successHandler, simply places the Ajax response text into the DIV that we
prepared for it, and failureHandler displays an appropriate message upon error.

The result of calling up this new document in your browser can be seen in Figure 19-3.

Figure 19-3. The result of calling up yuiurlget.html in a browser

398 | Chapter 19: Using YUI for Ajax and More

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 418 of 528

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 424 of 528

 if (mysql_num_rows($result))
 {
 $row = mysql_fetch_row($result);
 echo stripslashes($row[1]) . "<br clear=left />
";
 }
}
?>

rnheader.php
For uniformity, each page of the project needs to have the same overall design and
layout. Therefore I placed these things in Example 20-2, rnheader.php. This is the file
that is actually included by the other files and it, in turn, includes rnfunctions.php. This
means that only a single include is required in each file.

rnheader.php starts by calling the function session_start. As you’ll recall from Chap-
ter 13, this sets up a session that will remember certain values we want stored across
different PHP files.

With the session started, the program then checks whether the session variable
'user' is currently assigned a value. If so, a user has logged in and the variable
$loggedin is set to TRUE.

Using the value of $loggedin, an if block displays one of two sets of menus. The non-
logged-in set simply offers options of Home, Sign up, and Log in, whereas the logged-
in version offers full access to the project’s features. Additionally, if a user is logged in,
his or her username is appended in brackets to the page title and placed before the
menu options. We can freely refer to $user wherever we want to put in the name,
because if the user is not logged in, that variable is empty and will have no effect on the
output.

The only styling applied in this file is to set the default font to Verdana at a size of 2 via
a <font...> tag. For a more comprehensive design and layout, you’ll probably wish to
apply CSS styling to the HTML.

Example 20-2. rnheader.php

<?php // rnheader.php
include 'rnfunctions.php';
session_start();

if (isset($_SESSION['user']))
{
 $user = $_SESSION['user'];
 $loggedin = TRUE;
}
else $loggedin = FALSE;

echo "<html><head><title>$appname";
if ($loggedin) echo " ($user)";

rnheader.php | 409

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 429 of 528

Figure 20-2. The sign-up page

Example 20-5. rnsignup.php

<?php // rnsignup.php
include_once 'rnheader.php';

echo <<<_END
<script>
function checkUser(user)
{
 if (user.value == '')
 {
 document.getElementById('info').innerHTML = ''
 return
 }

 params = "user=" + user.value
 request = new ajaxRequest()
 request.open("POST", "rncheckuser.php", true)
 request.setRequestHeader("Content-type",
 "application/x-www-form-urlencoded")
 request.setRequestHeader("Content-length", params.length)
 request.setRequestHeader("Connection", "close")

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)

rnsignup.php | 413

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 433 of 528

Adding the “About Me” Text
Then the POST variable 'text' is checked to see whether some text was posted to the
program. If so, it is sanitized and all long whitespace sequences (including returns and
line feeds) are replaced with a single space. This function incorporates a double security
check, ensuring that the user actually exists in the database and that no attempted
hacking can succeed before inserting this text into the database, where it will become
the user’s “about me” details.

If no text was posted, the database is queried to see whether any already exists in order
to prepopulate the textarea for the user to edit it.

Adding a Profile Image
Next we move on to the section where the $_FILES system variable is checked to see
whether an image has been uploaded. If so, a string variable called $saveto is created,
based on the user’s username followed by the extension .jpg. For example, user Jill will
cause $saveto to have the value Jill.jpg. This is the file where the uploaded image will
be saved for use in the user’s profile.

Following this, the uploaded image type is examined and is only accepted if it is a jpeg,
png, or gif image. Upon success, the variable $src is populated with the uploaded image
using one of the imagecreatefrom functions according to the image type uploaded. The
image is now in a raw format that PHP can process. If the image is not of an allowed
type, the flag $typeok is set to FALSE, preventing the final section of image upload code
from being processed.

Processing the Image
First, the image’s dimensions are stored in $w and $h using the following statement,
which is a quick way of assigning values from an array to separate variables:

list($w, $h) = getimagesize($saveto);

Then, using the value of $max (which is set to 100), new dimensions are calculated that
will result in a new image of the same ratio, but with no dimension greater than 100
pixels. This results in giving the variables $tw and $th the new values needed. If you
want smaller or larger thumbnails, simply change the value of $max accordingly.

Next, the function imagecreatetruecolor is called to create a new, blank canvas $tw
wide and $th high in $tmp. Then imagecopyresampled is called to resample the image
from $src, to the new $tmp. Sometimes resampling images can result in a slightly blurred
copy, so the next piece of code uses the imageconvolution function to sharpen the image
up a bit.

420 | Chapter 20: Bringing It All Together

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 440 of 528

rnmembers.php
Using Example 20-10, rnmembers.php, your users will be able to find other members
and choose to add them as friends (or drop them if they are already friends). This
program has two modes. The first lists all members and their relationships to you, and
the second shows a user’s profile.

Viewing a User’s Profile
The code for the latter mode comes first, where a test is made for the GET variable
'view'. If it exists, a user wants to view someone’s profile, so the program does that
using the showProfile function, along with providing a couple of links to the user’s
friends and messages.

Adding and Dropping Friends
After that the two GET variables 'add' and 'remove' are tested. If one or the other has a
value, it will be the username of a user to either add or drop as a friend. This is achieved
by looking the user up in the MySQL rnfriends table and either inserting a friend
username or removing it from the table.

And, of course, every posted variable is first passed through sanitizeString to ensure
it is safe to use with MySQL.

Listing All Members
The final section of code issues a SQL query to list all usernames. The code places the
number returned in the variable $num before outputting the page heading.

A for loop then iterates through each and every member, fetching their details and then
looking them up in the rnfriends table to see if they are either being followed by or a
follower of the user. If someone is both a follower and a followee, they are classed as a
mutual friend. By the way, this section of code is particularly amenable to a template
solution such as Smarty.

The variable $t1 is nonzero when the user is following another member, and $t2 is
nonzero when another member is following the user. Depending on these values, text
is displayed after each username showing their relationship (if any) to the current user.

Icons are also displayed to show the relationships. A double pointing arrow means that
the users are mutual friends. A left-pointing arrow indicates the user is following an-
other member. And a right-pointing arrow indicates that another member is following
the user.

Finally, depending on whether the user is following another member, a link is provided
to either add or drop that member as a friend.

424 | Chapter 20: Bringing It All Together

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 444 of 528

When you call Example 20-10 up in a browser, it will look like Figure 20-5. See how
the user is invited to “follow” a nonfollowing member, but if the member is already
following the user, a “recip” link to reciprocate the friendship is offered. In the case of
a user already following another member, the user can select “drop” to stop the
following.

Figure 20-5. Using the members module

Example 20-10. rnmembers.php

<?php // rnmembers.php
include_once 'rnheader.php';

if (!isset($_SESSION['user']))
 die("

You must be logged in to view this page");
$user = $_SESSION['user'];

if (isset($_GET['view']))
{
 $view = sanitizeString($_GET['view']);

 if ($view == $user) $name = "Your";
 else $name = "$view's";

 echo "<h3>$name Page</h3>";
 showProfile($view);
 echo "$name Messages
";
 die("$name Friends
");
}

rnmembers.php | 425

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 445 of 528

 echo " [$follow]";
 }
 else
 {
 echo " [drop]";
 }
}
?>

On a production server, there could be thousands or even hundreds of
thousands of users, so you would probably substantially modify this
program to include searching the “about me” text, and support paging
of the output a screen at a time.

rnfriends.php
The module that shows a user’s friends and followers is Example 20-11,
rnfriends.php. This interrogates the rnfriends table just like the rnmembers.php pro-
gram, but only for a single user. It then shows all of that user’s mutual friends and
followers along with the people they are following.

All the followers are saved into an array called $followers and all the people being
followed are placed in an array called $following. Then a neat piece of code is used to
extract all those that are both following and followed by the user, like this:

$mutual = array_intersect($followers, $following);

The array_intersect function extracts all members common to both arrays and returns
a new array containing only those people. This array is then stored in $mutual. Now
it’s possible to use the array_diff function for each of the $followers and $following
arrays to keep only those people who are not mutual friends, like this:

$followers = array_diff($followers, $mutual);
$following = array_diff($following, $mutual);

This results in the array $mutual containing only mutual friends, $followers containing
only followers (and no mutual friends), and $following containing only people being
followed (and no mutual friends).

Armed with these arrays, it’s a simple matter to separately display each category of
members, as can be seen in Figure 20-6. The PHP sizeof function returns the number
of elements in an array; here I use it just to trigger code when the size is nonzero (that
is, friends of that type exist). Note how, by using the variables $name1, $name2, and
$name3 in the relevant places, the code can tell when you’re looking at your own friends
list, using the words Your and You are, instead of simply displaying the username.

rnfriends.php | 427

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 447 of 528

Question 3-7
A hyphen is reserved for the subtraction operators. A construct like $current-
user would be harder to interpret if hyphens were also allowed in variable names
and, in any case, would lead programs to be ambiguous.

Question 3-8
Variable names are case-sensitive. $This_Variable is not the same as
$this_variable.

Question 3-9
You cannot use spaces in variable names, as this would confuse the PHP parser.
Instead try using the _ (underscore).

Question 3-10
To convert one variable type to another, reference it and PHP will automatically
convert it for you.

Question 3-11
There is no difference between ++$j and $j++ unless the value of $j is being tested,
assigned to another variable, or passed as a parameter to a function. In such cases,
++$j increments $j before the test or other operation is performed, whereas $j++
performs the operation and then increments $j.

Question 3-12
Generally, the operators && and and are interchangeable except where precedence
is important, in which case && has a high precedence while and has a low one.

Question 3-13
You can use multiple lines within quotations marks or the <<< _END ... _END con-
struct to create a multiline echo or assignment.

Question 3-14
You cannot redefine constants because, by definition, once defined they retain their
value until the program terminates.

Question 3-15
You can use \' or \" to escape either a single or double quote.

Question 3-16
The echo and print commands are similar, except that print is a PHP function and
takes a single argument and echo is a construct that can take multiple arguments.

Question 3-17
The purpose of functions is to separate discrete sections of code into their own,
self-contained sections that can be referenced by a single function name.

Question 3-18
You can make a variable accessible to all parts of a PHP program by declaring it as
global.

Chapter 3 Answers | 437

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 457 of 528

Question 8-6
A FULLTEXT index enables natural language queries to find keywords, wherever they
are in the FULLTEXT column(s), in much the same way as using a search engine.

Question 8-7
A stopword is a word that is so common that it is considered not worth including
in a FULLTEXT index or using in searches. However, it does participate in a search
when it is part of a larger string bounded by double quotes.

Question 8-8
SELECT DISTINCT essentially affects only the display, choosing a single row and
eliminating all the duplicates. GROUP BY does not eliminate rows, but combines all
the rows that have the same value in the column. Therefore, GROUP BY is useful for
performing an operation such as COUNT on groups of rows. SELECT DISTINCT is not
useful for that purpose.

Question 8-9
To return only those rows containing the word Langhorne somewhere in the col-
umn author of the table classics, use a command such as:

SELECT * FROM classics WHERE author LIKE "%Langhorne%";

Question 8-10
When joining two tables together, they must share at least one common column
such as an ID number or, as in the case of the classics and customers tables, the
isbn column.

Question 8-11
To correct the years in the classics table you could issue the following three
commands:

UPDATE classics SET year='1813' WHERE title='Pride and Prejudice';
UPDATE classics SET year='1859' WHERE title='The Origin of Species';
UPDATE classics SET year='1597' WHERE title='Romeo and Juliet';

Chapter 9 Answers
Question 9-1

The term relationship refers to the connection between two pieces of data that have
some association, such as a book and its author, or a book and the customer who
bought the book. A relational database such as MySQL specializes in storing and
retrieving such relations.

Question 9-2
The process of removing duplicate data and optimizing tables is called
normalization.

442 | Appendix A: Solutions to the Chapter Questions

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 462 of 528

Chapter 12 Answers
Question 12-1

There are several benefits to using a templating system such as Smarty. They in-
clude but are not limited to:

• Separating the program code from the presentation layer.

• Preventing template editors from modifying program code.

• Removing the need for programmers to design page layout.

• Allowing the redesign of a web page without modifying any program code.

• Enabling multiple “skin” designs with little recourse to modifying program
code.

Question 12-2
To pass a variable to a Smarty template, a PHP program uses the
$smarty->assign function.

Question 12-3
Smarty templates access variables passed to them by prefacing them with a dollar
sign $ and enclosing them with curly braces {}.

Question 12-4
To iterate through an array in a Smarty template, you use the opening {section}
and closing {/section} tags.

Question 12-5
If Smarty has been installed, you can enable it in a PHP program by including the
Smarty.class.php file from its correct location (normally in a folder called Smarty,
just under the document root).

Chapter 13 Answers
Question 13-1

Cookies should be transferred before a web page’s HTML, because they are sent
as part of the headers.

Question 13-2
To store a cookie on a web browser, use the set_cookie function.

Question 13-3
To destroy a cookie, reissue it with set_cookie but set its expiration date in the past.

Question 13-4
Using HTTP authentication, the username and password are stored in
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'].

Chapter 13 Answers | 445

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 465 of 528

Question 13-5
The md5 function is a powerful security measure, because it is a one-way function
that converts a string to a 32-character hexadecimal number that cannot be con-
verted back, and is therefore almost uncrackable.

Question 13-6
When a string is salted, extra characters (known only by the programmer) are
added to it before md5 conversion. This makes it nearly impossible for a brute force
dictionary attack to succeed.

Question 13-7
A PHP session is a group of variables unique to the current user.

Question 13-8
To initiate a PHP session, use the session_start function.

Question 13-9
Session hijacking is where a hacker somehow discovers an existing session ID and
attempts to take it over.

Question 13-10
Session fixation is the attempt to force your own session ID onto a server rather
than letting it create its own.

Chapter 14 Answers
Question 14-1

To enclose JavaScript code, you use <script> and </script> tags.

Question 14-2
By default, JavaScript code will output to the part of the document in which it
resides. If the head it will output to the head; if the body then the body.

Question 14-3
You can include JavaScript code from other source in your documents by either
copying and pasting them or, more commonly, including them as part of a
<script src='filename.js'> tag.

Question 14-4
The equivalent of the echo and print commands used in PHP is the JavaScript
document.write function (or method).

Question 14-5
To create a comment in JavaScript, preface it with // for a single-line comment or
surround it with /* and */ for a multiline comment.

Question 14-6
The JavaScript string concatenation operator is the + symbol.

446 | Appendix A: Solutions to the Chapter Questions

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 466 of 528

LEFT()
LEFT(str, len)

Returns the leftmost len characters from the string str (or NULL if any argument is NULL). The
following code returns the string “Chris”:

SELECT LEFT('Christopher Columbus', '5');

RIGHT()
RIGHT(str, len)

Returns the rightmost len characters from the string str (or NULL if any argument is NULL). This
code returns the string “Columbus”:

SELECT RIGHT('Christopher Columbus', '8');

MID()
MID(str, pos, len)

Returns up to len characters from the string str starting at position pos. If len is omitted, then
all characters up to the end of the string are returned. You may use a negative value for pos,
in which case it represents the character pos places from the end of the string. The first position
in the string is 1. This code returns the string “stop”:

SELECT MID('Christopher Columbus', '6', '4');

LENGTH()
LENGTH(str)

Returns the length in bytes of the string str. Note that multibyte characters count as multiple
bytes. If you need to know the actual number of characters in a string use the CHAR_LENGTH
function. This code returns the value 10:

SELECT LENGTH('Tony Blair');

LPAD()
LPAD(str, len, padstr)

Returns the string str padded to a length of len characters by prepending the string with
padstr characters. If str is longer than len then the string returned will be truncated to len
characters. The example code returns the following strings:

January
February

462 | Appendix D: MySQL Functions

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 482 of 528

Specifier Description

%U Week (00–53), where Sunday is the first day of the week

%u Week (00–53), where Monday is the first day of the week

%V Week (01–53), where Sunday is the first day of the week; used with %X

%v Week (01–53), where Monday is the first day of the week; used with %x

%W Weekday name (Sunday–Saturday)

%w Day of the week (0=Sunday–6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four digits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric, two digits

%% A literal % character

DAY()
DAY(date)

Returns the day of the month for date, in the range 1 to 31 or 0 for dates that have a zero day
part such as “0000-00-00” or “2010-00-00”. You can also use the function DAYOFMONTH to return
the same value. This code returns the value 3:

SELECT DAY('2001-02-03');

DAYNAME()
DAYNAME(date)

Returns the name of the weekday for the date. This code returns the string “Saturday”:

SELECT DAYNAME('2001-02-03');

DAYOFWEEK()
DAYOFWEEK(date)

Returns the weekday index for date between 1 for Sunday through 7 for Saturday. This code
returns the value 7:

SELECT DAYOFWEEK('2001-02-03');

DAYOFYEAR()
DAYOFYEAR(date)

468 | Appendix D: MySQL Functions

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 488 of 528

Linux/Unix
If you installed the XAMPP package in Chapter 2, you already have PEAR installed.
However, you will need to install the MDB2 database access package and the MySQL
driver for it. To do this, you should need to issue only the following two commands:

pear install MDB2
pear install MDB2_Driver_mysql

Creating a Connect Instance
With all of PEAR, the MDB2 package, and the MySQL driver installed, you can start
to take advantage of these new additions. But to do so, you need to understand what
MDB2 is providing you with: a layer of abstraction.

In other words, MDB2 knows everything about accessing any major brand of database
program you may have installed. You simply use a common set of commands and tell
MDB2 which database to access. This means you can migrate to another SQL database
such as PostgreSQL and will only have to install the new MDB2 driver and change a
single line of code in your PHP file to be up and running again.

You connect to a MySQL database using MDB2 with code such as the following, where
$db_username and the other $db_ variables have already been read in from the
login.php file:

Figure E-5. Installing the PEAR MySQL MDB2 driver

Creating a Connect Instance | 477

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 497 of 528

require_once 'MDB2.php';

$dsn = "$db_username:$db_password@$db_hostname/$db_database";
$mdb2 = MDB2::connect("mysql://$dsn");

The require_once line loads MDB2. In the next line, the variable $dsn stands for data
source name and is an identifier for the database. It comprises
username:password@hostname/database. The variable $mdb2 is an object returned by
calling the connect method within the MDB2 class. Recall that as mentioned in Chap-
ter 5, the double colon (::) token indicates a class to be used on the left and a method
to call from that class to the right.

The full string passed to the connect method is as follows:

mysql://username:password@hostname/database

The mysql:// at the head of the string identifies the MDB2 driver to use and hence the
type of database to access. If, for example, you were using a PostgreSQL database you
would replace the head with pgsql://. The possible database types supported (as long
as you install the drivers) are fbsql, ibase, mssql, mysql, mysqli, oci8, pgsql, querysim,
and sqlite.

To check whether the program successfully connected to the database, you can issue
a call to the PEAR isError method, like this:

if (PEAR::isError($mdb2))
 die("Unable to connect to MySQL: " . $mdb2->getMessage());

Here the $mdb2 object is passed to the isError method, which returns TRUE if there is an
error. In that case the die function is called, and an error message is issued before calling
the getMessage method from within the $mdb2 object to output the last message, de-
scribing the error encountered.

Querying
Once you have an MDB2 object in $mdb2, you can use it to query the database. Instead
of calling the mysql_query function, call the query method of the $mdb2 object as follows
(assuming that the variable $query has already been assigned a query string):

$result = $mdb2->query($query);

Fetching a Row
The variable $result, returned by the query method, is another object. To fetch a row
from the database, just call the object’s fetchRow method like this:

$row = $result->fetchRow();

You can also determine the number of rows in $result using the numRows method like
this:

$rows = $result->numRows();

478 | Appendix E: Using PEAR and PHPUnit

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 498 of 528

Index

Symbols
! (exclamation mark)

!= (not equal) operator, 43, 65, 68, 309,
321

!== (not identical) operator, 65, 68, 309,
321

logical not operator, 44, 309, 321, 324
precedence in PHP, 65

NOT operator, 69
" " (quotation marks, double)

escaping in JavaScript strings, 310
in multiline PHP strings, 47
in MySQL search strings, 189
in PHP strings, 38, 46
in JavaScript strings, 306

$ (dollar sign)
$ function in JavaScript, 316
end-of-line matching in regular expressions,

366, 367
preceding PHP variable names, 37

omitting when using -> operator, 105
% (percent sign)

%= (modulus assignment) operator, 43, 65,
308, 321

modulus operator, 42, 65, 308, 321
& (ampersand)

&& (logical and) operator, 44, 309, 321,
324

precedence of, 321
&& (logical and) operator/precedence in

PHP, 65
&= (bitwise and assignment) operator, 65,

321
bitwise and operator, 65

variables passed by reference, 94
' ' (quotation marks, single)

enclosing PHP array items, 40
escaping in JavaScript strings, 310
in PHP strings, 46
in JavaScript strings, 306

() (parentheses)
forcing operator precedence, 65
function call in JavaScript, 321
function call in PHP, 90
grouping in regular expressions, 363, 367
implied, indicating operator precedence,

65
precedence in PHP, 65

* (asterisk)
*= (multiplication assignment) operator, 43,

65, 308, 321
multiplication operator, 42, 65, 308, 321
regular expression metacharacter, 361, 367
wildcard character, use with SELECT

command, 183
+ (plus sign)

++ (increment) operator, 42, 45, 308, 310,
321

precedence in PHP, 65
using in while loop, 80

+= (addition assignment) operator, 43, 45,
65, 308, 321

addition and string concatenation operator
in JavaScript, 321

addition operator, 42, 65, 308
Boolean mode in MySQL searches, 189
regular expression metacharacter, 362, 367
string concatenation operator in JavaScript,

310, 321

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

485

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 505 of 528

creating a file, 137
deleting a file, 140
locking files, 142
moving a file, 140
reading entire file, 143
reading from files, 139
updating files, 141
uploading files, 144–149

form data validation, 147
using $_FILES array, 146

file pointer, 141
$_FILES array, 145

contents of, 146
files, including and requiring in PHP, 96

include statement, 96
include_once, 97
require and require_once, 97

FileZilla, 28
file_exists function, 137
file_get_contents function (PHP), 143
final methods (PHP), 112
finally clause (try . . . catch), 328
Firefox

accessing JavaScript error messages, 303
Error Console message for JavaScript errors,

304
Firebug plug-in, 305
FireFTP, 27

FireFTP
advantages of, 27
installing, 27

fixation, session, 294
FLOAT data type, 171
flock function (PHP), 142

filesystems not supporting and use on
multithreaded server, 143

unlocking files, 143
fopen function (PHP), 138

supported modes, 138
for loops

in JavaScript, 332
breaking out of, 333
continue statement, 334

in PHP, 81
breaking out of, 83
continue statement, 84
controls removed from body of loop, 82

when to use, while loops versus, 82
foreach . . . as loops, 119–120

printing out values in multidimensional
associative array, 122

walking through multidimensional numeric
array, 123

forEach method (JavaScript), 349
cross-browser solution, 350

foreign keys, 206
form feed (\f) in JavaScript strings, 310
<form> tag, onSubmit attribute, 357
forms, 251–267

building using PHP, 251
creating form to add records to MySQL

database, using Smarty, 272
data validation, 147
example PHP program converting between

Fahrenheit and Celsius, 264–266
inserting and deleting data in MySQL using

PHP (example), 232–236
processing submitted data using PHP, 253–

264
checkboxes, 257
default values, 255
hidden fields, 260
input types, 256
labels, 262
radio buttons, 259
sanitizing input, 263
select tags, 260
text areas, 256
text boxes, 256

redisplaying after PHP validation, 370–375
uploading files from, 144–149
validating user input with JavaScript, 355–

361
form field validation, 358–361

frameworks for JavaScript, 393, 394
(see also YUI)

fread function (PHP), 138
reading a file, 139

friends on social networking site
adding and dropping, 424
module showing user’s friends and

followers, 427–430
fseek function (PHP), 141
FTP, transferring files to and from web server,

27
FULLTEXT indexes, 182

stopwords, 457–459
using MATCH . . . AGAINST on, 188

492 | Index

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 512 of 528

security and, 57
switch statements

in JavaScript, 329
break command, 330
default action, 330

in PHP, 74–77
alternative syntax, 77
breaking out, 76
default action, 76

system calls in PHP, 149

T
\t (tab character)

in JavaScript strings, 310
in PHP strings, 47
in regular expressions, 367
use with echo statement to print out array

data, 122
tables

adding new column, 175
checking whether new table has been

created, 167
creating for MySQL database, 166
creating in MySQL using PHP, 238
creating, viewing, and deleting, 177
defined, 158
describing in MySQL using PHP, 239
dropping in MySQL using PHP, 240
indexing, 177–183
intermediary table for many-to-many

relationships, 213
joining, 192–194
linking through insert ID, 244
populating using INSERT command, 174
relationships among, 212
renaming, 175

Tcl scripting language, 302
Telnet, using for remote access, 27
templating, 269
ternary operator (?), 77
ternary operators, 64
test function (JavaScript), 360
test method (JavaScript), 360, 369
text areas in forms, 256

controlling text wrapping, 257
text boxes in forms, 256
TEXT data type

listing of TEXT types, 170
VARCHAR versus, 170

<textarea> </textarea> tags, 256
this keyword (JavaScript), 342
$this variable (PHP), 105
TIME data type, 172
time function (PHP), 53, 133
time functions (MySQL), 471
timeout, setting for sessions, 293
TIMESTAMP data type, 172
TINYINT data type, 171
transactions, 214–217

beginning with BEGIN or START
TRANSACTION, 216

canceling using ROLLBACK, 216
committing using COMMIT command,

216
storage engines for, 215

triggers, 211
try . . . catch (JavaScript), 327
two-dimensional arrays (PHP), 40
type of a variable (in JavaScript), 311
typeof operator (JavaScript), 311, 313

U
ucfirst function, 92
unary operators, 64
Unauthorized error, 283
unit testing with PHPUnit, 481–484
Unix

installing MDB2 package, 477
installing other PEAR packages, 481
installing PHPUnit, 482
system calls from PHP, 149

unlink function (PHP), 140
UNSIGNED qualifier, MySQL numeric data

types, 171
UPDATE . . . SET queries, 190
updates, database

triggers for, 211
URLs

encoding question mark (?) in URL for GET
request, 399

links object in JavaScript, 317
user agent string (browsers), 294
user profiles (see profiles, social networking site

project)
usernames and passwords

checking validity in PHP authentication,
284

Index | 503

Download at Boykma.Com
www.it-ebooks.info

Preview from Notesale.co.uk

Page 523 of 528

