Providing $\sqrt{2}$ irrational

That's a great proof! You've successfully shown that assuming $\sqrt{2}$ is rational leads to a contradiction, thus proving that $\sqrt{2}$ is indeed irrational. Well done!

Here's a summary of the steps:

1. Assume $\sqrt{2}$ is rational, so $\sqrt{2}$ = a/b (where a and b are integers with no common factors).

- 2. Square both sides: $2 = a^2/b^2$.
- 3. Clear the fraction: $2b^2 = a^2$.
- 4. Analyze the equation: a^2 is even, so a is even (a = 2k).
- 5. Substitute a = 2k: $2b^2 = (2k)^2 = > b^2 = 2k^2$.
- 6. Conclude b is even (since b^2 is even).

7. Reach a contradiction: Both a and b are even, so they have a common factor of 2,

contradicting the assumption of simplest form.

8. Conclusion: $\sqrt{2}$ is irrational.

This proof is a classic example of a proof by contradiction, and it's a great demonstration of how assuming the opposite of what you want to prove can lead to a logical contradiction, trius establishing the truth of the original statement.