

Requiremen
ts
analysis
and

49 O ,,

N\
preV'™ page
Figure 1.3 The Waterfall model

1.3.3 The prototyping-oriented life-cycle model
Developed in the 1990s [Pomberger 1991].

A prototyping-oriented software development strategy does not differ fundamentally
from the classical phase-oriented development strategy. These strategies are more
complementary than alternative.

New aspects:
» The phase model is seen not as linear but as iterative, and

» It specifies where and how these iterations are not only possible but necessary.

Requirements
analysis and
coarse planning

Requirements analysis, project, contract, coarse schedule

Requirements
definition

Requirements definition, project schedule, system
prototype

User-Interface
prototyping

System architecture, component structure,
architecture and component prototypes

Architecture and
component
prototyping

Implementation System implementation

System test

v NnA X
- (O\ b L X Progress >
P (e\, \e\lél‘g g’@m@i%gntg'o‘ftware life cycle

Prototype construction 1s an iterative process (Figure 1.4). First a prototype is produced
on the basis of the results of preceding activities. During the specification phase a
prototype of the user interface is developed that encompasses significant parts of the
functional requirements on the target software system. Experiments are conducted on
this prototype that reflect real conditions of actual use in order to determine whether the
client’s requirements are fulfilled. Under conditions close to reality, software
developers and users can test whether the system model contains errors, whether it
meets the client’s preconceptions, and whether modifications are necessary. This
reduces the risk of erroneous or incomplete system specifications and creates a
significantly better starting point for subsequent activities.

1.3.4 The spiral model
Developed in 1988 [Boehm 1988].

The spiral model is a software development model that combines the above models or
includes them as special cases. The model makes it possible to choose the most suitable
approach for a given project. Each cycle encompasses the same sequence of steps for
each part of the target product and for each stage of completion.

A spiral cycle begins with the establishment of the following point:

reinvested in this maintenance. A new job title emerges, the class librarian,
who is responsible for ensuring the efficient usability of the class library.

e During the test phase, the function of not only the new product but also of
the reused components is tested. Any deficiencies in the latter must be
documented exactly. The resulting modifications must be handled centrally
in the class library to ensure that they impact on other projects, both current
and future.

o Newly created classes must be tested for their general usability. If there is a
chance that a component could be used in other projects as well, it must be
included in the class library and documented accordingly. This also means
that the new class must be announced and made accessible to other
programmers who might profit from it. This places new requirements on the
in-house communication structures.

The class library serves as a tool that extends beyond the scope of an individual project
because classes provided by one project can increase productivity in subsequent
projects.

The actual software life cycle recurs when new requirements arise in @@‘@Qﬁ

initiate a new requirements analysis stage. \e .
eS%
WOt

%+ Description of the prerequisites that must apply for the system to be used.
Note:

» The description of all information that is necessary for the employment of
the system, but not part of the implementation.

% Specification of the number of users, the frequency of use, and the jobs of the
users.

3. User interfaces
Contents:

+ The human-machine interface.
Notes:

» This section is one of the most important parts of the requirements definition,
documenting how the user communicates with the system.

» The quality of this section largely determines the acceptance of the software

product.
4. Functional requirements u\(
Contents: CO .
% Definition of the system functionality exp @&g
% All necessary specifications @e mount ?‘pected precision of
the data as5001ate vbﬁ&s functlo PZ

Notes:

f \5’)t%atto A@@a 2110} contain only the necessary information
bhout these functio a

» Any additional specifications, such as about the solution algorithm for a function,
distracts from the actual specification task and restricts the flexibility of the
subsequent system design.

» Only exact determination of value ranges for data permits a plausibility check to
detect input errors.

5. Nonfunctional requirements
Contents:

% Requirements of nonfunctional nature: reliability, portability, and response and
processing times ...
Note:

» For the purpose of the feasibility study, it is necessary to weight these requirements
and to provide detailed justification.

6. Exception handling

Contents:

% Description of the effects of various kinds of errors and the required system
behavior upon occurrence of an error.

Note:

» Developing a reliable system means considering possible errors in each phase
of development and providing appropriate measures to prevent or diminish the
effects of errors.

7. Documentation requirements
Contents:

¢ Establish the scope and nature of the documentation.
Note:

» The documentation of a system provides the basis for both the correct utilization of
the software product and for system maintenance.

8. Acceptance criteria

Contents: @ ‘u\k

¢ Establishing the conditions for inspection of the syster\léth@

Notes:
» The criteria refer to both func% N@Xm@onal ements

> T he acceptance critel ablished f al system requirement.
If no res ce criteria 1 ra glven requirement, then we
) the cllent i @a olut the purpose and value of the
ement. g
Glossary and mdex
Contents:

% A glossary of terms

«» An extensive index

Notes:

» The requirements definition constitutes a document that provides the basis for all
phases of a software project and contains preliminary considerations about the
entire software life cycle

» The specifications are normally not read sequentially, but serve as a reference for
lookup purposes.

2.2 Quality criteria for requirements definition

e [t must be correct and complete.

e It must be consistent and unambiguous.
e It should be minimal.
e It should be readable and comprehensible.

e [t must be readily modifiable.

2.3 Fundamental problems in defining requirements

The fundamental problems that arise during system specification are [Keller 1989]:
e The goal/means conflict
e The determination and description of functional requirements
e The representation of the user interfaces

The goal/means conflict in system specification.

e The primary task of the specification process is to establish the goal of system
development rather than to describe the means for achieving the goal.

e The requirements definition describes what a system must do, but @
individual functions are to be realized. \ e 6

Determining and describing the functional re

e Describing functional reql%ﬁ l@@ rm of te)zlxiitremely difficult and
on

leads to very lenﬁ
e Asy ¢ user mt?ﬂ%
aw e exploratio n
P (qulrements g®

o [t simplifies the determination of dependencies between system functions and
abbreviates the requirements definition.

'S\'mg as an executable prototype
onfunctional and interaction-related

e A prototype that represents the most important functional aspects of a software
system represents this system significantly better than a verbal description could
do.

Designing the user interfaces.

e User interfaces represent a user-oriented abstraction of the functionality of a
system.

e The graphical design of screen layouts requires particular effort and only affects
one aspect of the user interface, its appearance.

e The much more important aspect, the dynamics behind a user interface, can
hardly be depicted in purely verbal specifications.

Therefore the user interface components of the requirements definition should always
be realized as an executable prototype.

2.4 Algebraic specification

Algebraic specification [Guttag 1977] is a technique whereby an object is specified in
terms of the relationships between the operations that act on that object.

A specification is presented in four parts (Figure 2.1):

1. Introduction part where the sort of the entity being specified is introduced and
the name of any other specifications which are required are set out

2. Informal description of the sort and its operations

Signature where the names of the operations on that object and the sorts of their
parameters are defined

4. Axioms where the relationships between the sort operations are defined.

<SPECIFICATION NAME> (<Generic Parameter>)

sort <name>
imports <LIST OF SPECIFICATION NAMES> ' O .
[

preV!
Figure 2.1 The format of an algebraic specification.

Note:

» The introduction part of a specification also includes an imports part which names
the other specifications which are required in a specification.

Description part:

% Formal text with an informal description

Signature part:
% Names of the operations which are defined over the sort,
% Number and sort of their parameters, and
% Sort of the result of evaluating of the operation.

Axioms part:

» A great many software systems, particularly embedded real-time systems, are
structured as a set of parallel communicating processes which is an outline design of
a simple control system.

» With a fast processor, it may not be necessary to implement an embedded system as
a parallel process. A sequential system which uses polling to interrogate and control
hardware components may provide adequate performance.

» The advantage of avoiding a parallel systems design is that sequential programs are
easier to design, implement, verify and test than parallel systems. Time
dependencies between processes are hard to formalize, control and verify.

Note:

» There are some applications, such as vector processing, where a parallel approach
is a completely natural one. If n-element vectors have to be processed with the same
operation carried out on each element, the natural implementation is for a set of n-
processes carrying out the same operation at the same time.

Design process:
Two-stage activity: u\k
1. Idept@fy the log-ical dpsign structure, namely the gxele}@og s‘ystem and
their inter-relationships
2. Realize this structure 1% @Sm%e exe . This latter stage is
tai 61{2

sometlmes co f@ des1gn as programming.

@X’l\@mp 9
@Xhe design proces? uetr€ed not only by the design approach but also by the
criteria used to decompose a system.

» Numerous decomposition principles have been proposed.

Classification of decomposition methods
1. Function-oriented decomposition. ((Wirth 1971], [Yourdon 1979]).

» A function-oriented system perspective forms the core of the design.

» Based on the functional requirements contained in the requirements
definition, a task-oriented decomposition of the overall system takes place.

2. Data-oriented decomposition. ([Jackson 1975], [Warnier 1974], [Rechenberg
1984a])

» The design process focuses on a data-oriented system perspective.
» The design strategy orients itself to the data to be processed.
» The decomposition of the system stems from the analysis of the data.

3. Object-oriented decomposition. ([Abbott 1983], [Meyer 1988], [Wirfs-Brock
1989], [Coad 1990], [Booch 1991], [Rumbaugh 1991])

» An object-oriented system perspective provides the focus of the design.

The user can click on the menu bar with the mouse to display all the commands
belonging to a menu and can select a command, likewise with the mouse.

Classification of menu commands
e Immediately executable commands
e Commands with parameters
e Commands for switching modes

Directly executable commands including all menu commands that require no parameters
or that operate on the current selection.

Example 3.2
Commands Cut and Paste are elementary operations.

With a simple mouse click the user causes the system to carry out an action that
normally involves processing data.

Commands with parameters are similar in effect to those in the first class. They differ
primarily in the user actions that are required to execute them.

Example 3.3 @ CO :
Text editor commands Find and Find Next: locat cé@@c Ts in a text.
Find has an implicit parameter t lthNQHCh s 1 to begin. The
execution of the com anﬁd‘ ¢ user to i r“ parameters Input
prompting 18‘@& ed via a d1 ’X_ he execution of such a command
al sequentia € user.
@Jx‘ﬁfy the repeat x@)g a command with the same parameters, it can be
s

eful to use a dedicate mediately executable menu command (Find Next.)

Instead of manipulating data, the menu commands of the third class cause a change in
mode that affects subsequent commands or the way in which data are displayed.

Example 3.4
Switching between insert and overwrite mode and the command Show Controls in a
text editor to display normally invisible control characters.

» A frequently neglected task in the design of a menu system is the choice of
appropriate wording for the menu commands. Apply the rule that the command
should be as short as possible, yet still meaningful.

» In the design of a menu system, similar commands should be grouped together
under the same menu.

» The more frequently a command is used, the higher in the menu it should be placed
to avoid unnecessary mouse motion.

The basic possibilities for handling the situation where a command is invoked in a
mode where it cannot be executed are:

contain control structures. The interconnection of the subsolutions can and
should already be specified at this stage by means of sequential, conditional and
repeated execution.

Treat details as late as possible. This means, after the decompositions. This
means, after the decomposition of a task into appropriate subtasks, waste no
thought yet on what the solutions of these subtasks could look like. First clarify
the interrelationship of the subtasks; only then tackle the solution of each
subtask independently. This ensures that critical decisions are made only after
information is available about the interrelationship of the subtasks. This makes it
easier to avoid errors with grave consequences.

A continuous reduction of complexity accompanies the design process when
using the principle of stepwise refinement. For example, if a task A is solved by
the sequential solution of three subtasks B, C and D, there is a temptation to
assess this decomposition as trivial and of little use.

The subtasks become increasingly concrete and their solution requires
increasingly detailed information. This means stepwise refinement not only of
the algorithms but also the data with which they work. The concretization gf the
data should also be reflected in the interfaces of the subsolutions. In t 1
design step, we recommend working with abstract datg struct ct or
abstract data types whose concrete structure is defi X ﬁ the 1ast
subtasks can no longer be solved Without

During stepwise refineme ust co %eck whether the

current decompo T@] ntmuedl 11 er refinement or
whethe wg rapped.

reof.

E ¥he most 1mportanQe<@ig tion decisions are made at the very start, when the

designer knows the least. Hence the designer is hardly able to apply stepwise
refinement consistently.

» If the design falters, the designer is tempted to save the situation by incorporating

special cases into already developed subalgorithms.

3.4 Object-oriented design

[Booch 1991], [Coad 1990], [Heitz 1988], [Rumbaugh 1991], [Wasseman 1990],
[Wilso 1990], [Wirfs-Brock 1989], [Wirfs-Brock 1990].

Function-oriented design and object-oriented design

>
>
>

Function-oriented design focuses on the verbs

Object-oriented design focuses on the nouns.

Object-oriented design requires the designer to think differently than with function-
oriented design.

Since the focus is on the data, the algorithms are not considered at first; instead the
objects and the relationships between them are studied.

actually exists and whether it is used correctly (i.e. whether the number of
parameters and their data types are correct).

¢ Languages may have independent compilation (e.g. C and FORTRAN), where
this check takes place only upon invocation at run time (if at all)

¢ Alternatively, languages may have separate compilation (e.g. Ada and Modula-
2), where each module has an interface description that provides the basis for
checking its proper use already at compile time.

Documentation value of a programming language
% Affects the readability and thus the maintainability of programs.

The importance of the documentation value rises for large programs and for
software that the client continues to develop.

¢ High documentation value results, among other things, from explicit interface
specifications with separate compilation (e.g. in Ada and Modula-2). Likewise
the use of keywords instead of special characters (e.g. begin . . . end in Pascal
rather than {. . .} in C) has a positive effect on readability because the greater
redundancy gives less cause for careless errors in reading. Since programsgr:
generally written only once but read repeatedly, the minimum addltlon‘l)&

in writing pays off no more so than in the maintenanc
language’s scoping rules influence the readab111t§1 e\

% Extensive languages with numer ctions (e.g. Ada) are difficult
to grasp in all their details ﬁgng mis tions. Languages of
medium size and @ g Pascal (%)harbor significantly less
such da

f«@}’lll ures in @ in anguage
* 3 ata

* Primarily whe must be processed, the availability of data
structures in the programming language plays an important role.

% Older languages such as FORTRAN, BASIC, and COBOL offer solely the
possibility to combine multiple homogeneous elements in array or
heterogeneous elements in structures.

% Recursive data structures are difficult to implement in these languages.

% Languages like C permit the declaration of pointers to data structures. This
enables data structures of any complexity, and their scope and structure can
change at run time. However, the drawback of these data structures is that they
are open and permit unrestricted access (but compare with Java [Heller 1997]).

% Primarily in large projects with multiple project teams, abstract data takes on
particular meaning. Although abstract data structures can be emulated in any
modular language, due to better readability, preference should be given to a
language with its own elements supporting this concept.

¢ Object-oriented languages offer the feature of extensible abstract data types that
permit the realization of complex software systems with elegance and little
effort. For a flexible and extensible solution, object-oriented languages provide a
particularly good option.

e For every program component, the declarations (of data types, constants,
variables, etc.) should be distinctly separated form the statement section.

e The declaration sections should have a uniform structure when possible, e.g.
using the following sequence: constant, data types, classes and modules,
methods and procedures.

e The interface description (parameter lists for method and procedures) should
separate input, output and input/output parameters.

e Keep comments and source code distinctly separate.

e The program structure should be emphasized with indentation.

4.3 Portability and reuse

The objective of this section is to describe the problems which can arise in writing
portable high-level language programs and suggest how non-portable parts of a program
may be isolated. The section is also concerned with software reuse. The advantages and
disadvantages of reuse are discussed and guidelines given as to how reusable abstract
data types can be designed. \(

4.3.1 Software portability
([Brown 1977], [Tanenbaum et al. 1978], Wal 9@&\% 1985])

» Can be achieved by one machme n W g mlcr ompllmg a program
en 1mple stract machine on a

into some abstract m
variety of c&& % g p %ﬁ 10 te from one dialect of a

pr(é age to anotg
racteristic ot@) gram is that it is self-contained. The program
should not rely on the existence of external agents to supply required functions.

» In practice, complete self-containment is almost impossible to achieve and the
programmer intending to produce a portable program must compromise by isolating
necessary references to the external environment. When that external environment is
changed those dependent parts of the program can be identified and modified.

» Even when a standard, widely implemented, high-level language is used for
programming, it is difficult to construct a program of any size without some
machine dependencies. These dependencies arise because feature of the machine
and its operating system. Even the character set available on different machines may
not be identical, with the result that programs written using one character set must
be edited to reflect the alternative character set.

» Portability problems that arise when a standard high-level language is used can be
classified under two headings:

- problems caused by language features influenced by the machine architecture,
and

- problems caused by operating system dependencies.

The re-use of existing software should be encouraged whenever possible as it
reduces the amount of code which must be written, tested and documented.
However, the use of subroutine libraries reduces the self-containedness of a program
and hence may increase the difficulty of transferring that program from one
installation to another.

If use is made of standard subroutine libraries such as the NAG library, this will not
cause any portability problems if the program is moved to another installation where
the library is available. On the other hand, if the library is not available,
transportation of the program is likely to be almost impossible.

If use is made of local installation libraries, transporting the program either involves
transporting the library with the program or supplementing the target system library
to make it compatible with the host library. The user must trade off the productivity
advantages of using libraries against the dependence on the external environment
which this entails.

One of the principal functions of an operating system is to provide a file system.
Program access to this is via primitive operations which allow the user to name,
create, access, delete, protect and share files. There are no standards goverm
these operations should be provided. Each operating system supports the V
different ways.

As high-level language systems must provide file fg@\@y 1§rface with the
file system. Normally, the file syste in the high-level

language are synonymous w1 s te 11 s. Therefore, the least
portable parts of a prﬁg@‘ ose oper %@n olve access to files.

e 630

1. The conventidn for naming files may differ from system to system. Some
systems restrict the number of characters in a file name, other systems impose
restrictions on exactly which characters can make up a file name, and yet
others impose no restrictions whatsoever.

2. The file system structure may differ from system to system. Some file
systems are hierarchically structured. Users may create their own directories
and sub-directories. Other systems are restricted to a two-level structure
where all files belonging to a particular user must reside in the same directory.

3. Different systems utilize different schemes for protecting files. Some systems
involve passwords, other systems use explicit lists of who may access what,
and yet others grant permission according to the attributes of the user.

4. Some systems attempt to classify files as data files, program files, binary files
or as files associated with the application that created them. Other systems
consider all files to be untyped files of characters.

5. Most systems restrict the user to a maximum number of files which may be in
use at any one time. If this number is different on the host machine from that
on the target machine, there may be problems in porting programs which have
many files open at the same time.

6.4 Document maintenance

As a software system is modified, the documentation associated with that system

must also be modified to reflect the changes to the system.

All associated documents should be modified when a change is made to a program.

Assuming that the change is transparent to the user, only ~ documents
describing the system implementation need be changed. If the system change is
more than the correction of coding errors, this will mean revision of design and
test documents and, perhaps, the higher level documents describing the system
specification and requirements.

One of the major problems in maintaining documentation is keeping different

representations of the system in step with each other. The natural tendency is
to meet a deadline by modifying code with the intention of modifying other
documents later. Often, pressure of work means that this modification is
continually set aside until finding what is to be changed becomes very difficult
indeed. The best solution to this problem is to support document maintenance
with software tools which record document relationships, remind software
engineers when changes to one document affect another, and reco @
inconsistencies in the documentation. 6[3

If the system modification affects the user int ;%er by adding new

peex

immediately. In an on-lin ight b hed by providing a
system noticeb a&g ath user may ﬁ‘s\’s’ new item is added to
the n can be in hen they log in to the system.

nges c m ted on a real noticeboard and in a regular
newsletter dlstzr? system users. At periodic intervals, user
documentation should be updated by supplying new pages which describe the
changes made to the user interface.

facilities or by extending existmgﬂ i ould t@‘ntlmated to the user
my\ t e

Paragraphs which have been added or changed should be indicated to the reader.

New versions of documents should be immediately identifiable. The fact that a

document has been updated should not be concealed on an inner page. Rather,
the version number and date should be clearly indicated on the cover of the
document and, if possible, different versions of each document should be issued
with a different colour or design of cover.

6.6 Document portability

When a computing system is moved from one machine to another, the

documentation associated with that system must be modified to reflect the new
system. The work involved in this is comparable to the work involved in moving
the programs themselves.

If portability is a system design objective, the documentation must also be designed

and written with the same aim.

Program S1Ze€ccocceeveieiieiieeeeeeeeee, 5:1
Coding tiME........ccovveereerierieeie e 25:1
Required testing time............ccoecveveenieneennee. 26:1
Required computation time...........ccceceeuennee. 11:1
Execution time of finished program............... 13:1

» The time requirement for each task handled in a team consists of two basic
components ([Brooks 1975]):

(1) Productive work

(2) Communication and mutual agreement of team members

If no communication were necessary among team members, then the time
requirement ¢ for a project would decline with the number 7 of team members\k

o.M

If each team member must exchange information wj ﬁ\‘%r \ﬂ%that the
0

average time for such communication i ké{@ pment time follows the
formula: m & 2&
(O ~ I/n +& nze" 6

pPaQC be

late software project makes it later." ([Brooks 1975])

t~1/n

\px&t\"

"Adding manpower

» Most empirical values for cost estimation are in-house and unpublished. The
literature gives few specifications on empirical data, and these often diverge
pronouncedly. The values also depend greatly on the techniques and tools used.

» Distribution of the time invested in the individual phases of software development
(including the documentation effort by share) according to the selected approach
model and implementation technique ([Pomberger 1996]):

Approach model: classical sequential software life cycle

Implementation technique: module-oriented

problem analysis and system specification....... 25%
ESIGN...eiiiiciiecie ettt 25%
IMplementation..........coeeeeeveeiencrecnieneeecnieennen 15%

EESTINZ. eevveeereerieee ettt erre e esre e e e e 35%

» The maintenance cost estimate may be refined by judging the importance of each
factor which affects the cost and selecting the appropriate cost multiplier. The basic
maintenance cost is then multiplied by each multiplier to give the revised cost
estimate.

Example 7.2 Say in the above system the factors having most effect on maintenance
costs were reliability (RELY) which had to be very high, the availability of support staff
with language and applications experience (AEXP and LEXP) which was also high, and
the use of modern programming practices for system development (very high).

From Boehm's table, we have:

RELY 1.10
AEXP 0.91
LEXP 0.95
MODP 0.72

B\

By applying these multipliers to the initial cost estimate, a la\@q;&la may be

computed as follows: Ote

AME = 35, \Nlﬂ@ﬂ;} ;Z @& @%ths
P fheé!lcnon in r@ has come about partly because experienced staff
n

are available for afrCe work but mostly because modern programming
practices had been used during software development. As an illustration of their
importance, the maintenance cost estimate if modern programming practices are not
used at all and other factors (including the development cost!) are unchanged is as
follows:

AME =35.4*1.10 * 0.91 * 0.95 * 1.40 = 47.1 person-months.

» This is a gross estimate of the annual cost of maintenance for the entire software
system. In fact, different parts of the system will have different ACTs so a more
accurate formula can be derived by estimating initial development effort and annual
change traffic for each software component. The total maintenance effort is then the
sum of these individual component efforts.

» One. of the problems encountered when using an algorithmic cost estimation model
for maintenance cost estimation is that it takes no account of the fact that the
software structure degrades as the software ages. Using the original development
time as a key factor in maintenance cost estimation introduces inaccuracies as the

software loses its resemblance to the original system. It is not clear whether this
cost estimation model is valid for geriatric software systems.

» The existence of a cost estimation model which takes into account factors such as
programmer experience, hardware constraints, software complexity, etc., allows
decisions about maintenance to be made on a quantitative rather than a qualitative
basis.

Example 7.3 Say in the above example system that management decided that money
might be saved by using less experienced staff for software maintenance. Assume that
inexperienced staff cost $5000 per month compared to $6500 for more experienced
software engineers.

Using experienced staff, the total annual maintenance costs are:

AMC =24.23 * 6500 = $157 495

Using inexperienced staff, the effort required for software maintenance is increased
because the staff experience multipliers change:

AME =35.24 % 1.10 * 1.07 * 1.13 * 0.72 = 33.89 person-months. u\‘

Illus total COSts uSIIlg lllelipeIIEIlCEd Sta‘ff are: e S E k\-

AMC =33.89 * SOW@m N -‘ 623‘
Pi @\{ }ppears@bm%m:}ﬁe in this example to use inexperienced staff
ther

than experienc

Measuring program maintainability

» Maintainability metrics are based on the assumption that the maintainability of a
program is related to its complexity.

» The metrics measure some aspects of the program complexity.

» It is suggested that high complexity values correlate with difficulties in maintaining
a system component.

» The complexity of a program can be measured by considering ([Halstead 1977])
e the number of unique operators,
e the number of unique operands,
e the total frequency of operators, and

o the total frequency of operands in a program.

decisions made by maintenance management are overwhelmed by it. This law is
a result of fundamental structural and organizational effects.

The fourth law suggests that most large programming projects work in what he
terms a 'saturated' state. That is, a change of resources or staffing has
imperceptible effects on the long-term evolution of the system.

The fifth law is concerned with the change increments in each system release.

Lehman's laws are really hypotheses and it is unfortunate that more work has not
been carried out to validate them. Nevertheless, they do seem to be sensible and
maintenance management should not attempt to circumvent them but should use
them as a basis for planning the maintenance process. It may be that business
considerations require them to be ignored at any one time (say it is necessary to
make several major system changes). In itself, this is not impossible but
management should realize the likely consequences for future system change.

Item 11: Plan the Test Environment

Item 12: Estimate Test Preparation and

Execution Time

Chapter 3. The Testing Team

Item 13: Define Roles and

Responsibilities

Item 14: Require a Mixture of Testing

Skills, Subject-Matter Expertise, and

Experience
Uk

Item 15: Evaluate the Teste-rQ

Effectiveness tesa\

\
C;ha\gR@NTﬁg Svstem’\AQh Q‘tur6e’Z

P(e P ‘;P(QQ6 Understand the Architecture and

Underlying Components

Item 17: Verify That the System Supports
Testability

Item 18: Use Logging to Increase System
Testability
Item 19: Verify That the System Supports

Debug and Release Execution Modes

Chapter 5. Test Design and Documentation

Item 20: Divide and Conquer

Preface

In most software-devel opment organizations, the testing program functions as the
fina "quality gate" for an application, alowing or preventing the move from the
comfort of the software-engineering environment into the real world. With thisrole
comes alarge responsibility: The success of an application, and possibly of the
organization, can rest on the quality of the software product.

A multitude of small tasks must be performed and managed by the testing team—
so many, in fact, that it is tempting to focus purely on the mechanics of testing a
software application and pay little attention to the surrounding tasks required of a
testing program. Issues such as the acquisition of proper test data, testability of the
application's requirements and architecture, appropriate test-procedure standards
and documentation, and hardware and facilities are often addressed very Iate if a
al, inaproject's life cycle. For projects of any significant size, test

tools alone will not suffice—a fact to which most experi @@f ers WI||
attest. ﬁ"

Knowledge of what constitutes &Mén‘a ’{? effort istypicaly
gained through exper zdti &[e@ ogram could have been
much more m tan task rmed earlier in the project life
cycleg m that point, it's usualy too late for the

curr prolect to benef\T e experlence

Effective Software Testing provides experience-based practices and key concepts
that can be used by an organization to implement a successful and efficient testing
program. The goal isto provide a ditilled collection of techniques and discussions
that can be directly applied by software personnel to improve their products and
avoid costly mistakes and oversights. This book details 50 specific software testing
best practices, contained in ten parts that roughly follow the software life cycle.
This structure itself illustrates a key concept in software testing: To be most
effective, the testing effort must be integrated into the software-devel opment
process as awhole. |solating the testing effort into one box in the "work flow" (at
the end of the software life cycle) is a common mistake that must be avoided.

The material in the book ranges from process- and management-related topics,
such as managing changing requirements and the makeup of the testing team, to
technical aspects such as ways to improve the testability of the system and the
integration of unit testing into the development process. Although some

Acknowledgments

My thanksto all of the software professionas who helped support the development
of this book, including students attending my tutorials on Automated Software
Testing, Quality Web Systems, and Effective Test Management; my co-workers on
various testing efforts at various companies,; and the co-authors of my various
writings. Their valuable questions, insights, feedback, and suggestions have

directly and indirectly added value to the content of this book. | especialy thank
Douglas McDiarmid for his valuable contributions to this effort. His input has
greatly added to the content, presentation, and overall quaity of the materidl.

My thanks also to the following individuals, whose feedback was invaluable: Joe
Strazzere, Gerad Harrington, Karl Wiegers, Ross Collard, Bob Binder, Wayne
Pagot, Bruce Katz, Larry Fellows, Steve Paulovich, and Tim Van Tongeren.

| want to thank the executives at Addison-Wedley for th%mt\lﬂqu ect,

especially Debbie Lafferty, Mike Hendrickson, Joh uzikowski, and

Elizabeth Ryan. O’(_e ,};
Igssterbut not Ieast \ﬁaﬁ{lﬁ)‘:‘&rowgw@ﬁ&% e interesting book

EIfrlge ustln P age

Chapter 1. Requirements Phase

The most effective testing programs start at the beginning of a project, long before
any program code has been written. The requirements documentation is verified
first; then, in the later stages of the project, testing can concentrate on ensuring the
quality of the application code. Expensive reworking is minimized by eliminating
requirements-related defects early in the project's life, prior to detailed design or
coding work.

The requirements specifications for a software application or system must
ultimately describe its functiondity in great detail. One of the most challenging
aspects of requirements development is communicating with the people who are
supplying the requirements. Each requirement should be stated precisely and
clearly, so it can be understood in the same way by everyone who reads it.

If there is a consistent way of documenting requirements, it is possible fqrthe
stakeholders responsible for requirements gathering to effectivaggn inthe
requirements process. As soon as arequirement is made\shl be tested

and clarified by asking the stakeholders d m@& A variety of
requirement tests can be appliegﬂj eacl@ ent is relevant, and
that everyone has the samw@ ing of it [

prev'®oage

Item 4. Ensure That Requirement Changes Are
Communicated

When test procedures are based on requirements, it isimportant to keep
test team members informed of changes to the requirements as they
occur. This may seem obvious, but it is surprising how often test
procedures are executed that differ from an application's implementation
that has been changed due to updated requirements. Many times, testers
responsible for devel oping and executing the test procedures are not
notified of requirements changes, which can result in false reports of
defects, and loss of required research and valuable time.

There can be severa reasons for thiskind of process breakdown, such
as.

Undocumented changes. Someone, for ex E@ tct or
project manager, the customer, or Ssanaydt, has
Instructed the devel oper 1oy af hange, without

agreement fro OW@ olders, @ith oper has
impleqet @Nﬂa chan wqr_&:t mmunicating or documenting
@@éﬂﬂess nﬁ?&hﬁén place that makesiit clear to the
developer how when requirements can be changed. Thisis
commonly handled through a Change Control Board, an
Engineering Review Board, or some similar mechanism,
discussed below.
Outdated requirement documentation. An oversight on the testers
part or poor configuration management may cause atester to work
with an outdated version of the requirement documentation when
developing the test plan or procedures. Updates to requirements
need to be documented, placed under configuration management
control (baselined), and communicated to all stakeholders
involved.
Softwar e defects. The devel oper may have implemented a
requirement incorrectly, although the requirement documentation
and the test documentation are correct.

data entry, for example, or business rules that could corrupt data or result in
violation of regulations.

Operational characteristics. Some test requirements will rank high on the
priority list because they apply to frequently-used functions or are based
upon alack of knowledge of the user in the area. Functions pertaining to
technical resources or internal users, and those that are infrequently used, are
ranked lower in priority.

User requirements. Some test requirements are vital to user acceptance. If
the test approach does not emphasize the verification of these requirements,
the resulting product may violate contractual obligations or expose the
company to financial loss. It isimportant that the impact upon the end user
of any potential problem be assessed.

Available resources. A factor in the prioritization of test requirementsisthe
availability of resources. As previoudy discussed, the test program must be
designed in the context of constraints including limited staff availability,
limited hardware availability, and conflicting project requirem ﬁWe IS
where the painful process of weighing trade-offsis perf@@i

Most risk is caused by afew factors: x_eSa

Short time-to-mar k&f@m @Zu}for the software
product I|ty of ?@'\ urces al the more important.
? udgets and schedules are often

mined at th aprOJect during proposa devel opment, without
Inputs from testing personnel, reference to past experience, or other effective
estimation techniques. A good test manager can quickly ascertain when a
short-time-to-market schedule would prevent adequate testing. Test
strategies must be adapted to fit the time available. It isimperative that this
issue be pointed out immediately so schedules can be adjusted, or the risks
of fast development can be identified and risk-mitigation strategies
developed.
New design processes. Introduction of new design processes, including new
design tools and techniques, increases risk.
New technology. If new technology isimplemented, there may be a
significant risk that the technology will not work as expected, will be
misunderstood and implemented incorrectly, or will require patches.
Complexity. Analyses should be performed to determine which functionality
Ismost complex and error-prone and where failure would have high impact.
Test-team resources should be focused on these aress.

ltem 11: Plan the Test Environment

The test environment comprises al of the elements that support the physical
testing effort, such as test data, hardware, software, networks, and facilities. Test-
environment plans must identify the number and types of individuals who require
access to the test environment, and specify a sufficient number of computers to
accommodate these individuals. (For a discussion of test-team membership, see
Chapter 3)) Consideration should be given to the number and kinds of
environment-setup scripts and test-bed scripts that will be required.

In this chapter, the term production environment refers to the environment in
which the fina software will run. This could range from a single end-user
computer to a network of computers connected to the Internet and serving a
complete Web site.

While unit- and mtegratl on-level tests are usudly performed within the
development environment by the development staff, system t d
acceptance tests are idedlly performed within a separ) mg that
represents a configuration identical to the r onment, or a least a
scaled-down version of the produ t -environment
configuration must be repﬁ@)&f the pro onment because the
test environm leto repl |ne conflguratl on of the
prodlggtt% en n.Qr er any configuration-related issues that
the applicatien, softvvare incompatibilities, clustering, and

firewall issues. However, fully replicating the production environment is often not
feasible, due to cost and resource constraints.

After gathering and documenting the facts as described above, the test team must
compile the following information and resources preparatory to designing atest
environment:

Obtain descriptions of sample customer environments, including alisting of
support software, COTS (commercia off-the-shelf) tools, computer
hardware and operating systems. Hardware descriptions should include such
elements as video resolution, hard-disk space, processing speed, and
memory characteristics, as well as printer characteristics including type of
printer, capacity, and whether the printer is dedicated to the user's machine
or connected to a network server.

Determine whether the test environment requires an archive mechanism,

such as atape drive or recordable CD (CD-R) drive, to alow the storage of

number of test procedures and number of tester hours expended, taking into
account experience from similar historical projects. The result is then used to
estimate the number of personnel hours (or full time equivaent personnel) needed
to support the test effort on the new project.

For this estimation method to be most successful, the projects being compared
must be similar in nature, technology, required expertise, problems solved, and
other factors, as described in the section titled "Other Considerations” later in this
ltem.

Table 12.3 shows example figures derived using the Test Procedure Method, where
atest team has estimated that a new project will require 1,120 test procedures. The
test team reviews historical records of test efforts on two or more similar projects,
which on average involved 860 test procedures and required 5,300 personnel-hours
for testing. In these previous test efforts, the number hours per test procedure was
approximately 6.16 over the entire life cycle of testing activities, from startup and
planning to design and development to test execution and repm"rhé 300
hours were expended over an average nine-month per @r, ng 3.4 full-

time-equivalent test engineers for the proj 'iﬁ@ prolect the team plans
to develop 1,120 test procedures @

Table 12.3 '{ \Ne“Slze OsﬂlﬂatQUsmg the Test-Procedure

ore\’ ~ A0S Method
Nulrbet of Number [Performance| Number
Test of Person Period of
Procedures [Factor| Hours Testers
Historical 860 6.16 5,300 |9 months 3.4
Record (1,560 hrs)
(Average of
Two or More
Similar
Projects)
New Project 1,120 6.16 6,900 |12 months 3.3
Estimate (2,080 hrs)

The factor derived using the Test Procedure Method is most reliable when the
historical values are derived from projects undertaken after the testing culture of
the organization has reached maturity.

ltem 13: Define Roles and Responsibilities!"

[Adapted from Elfriede Dustin et al., Automated Software
Testing (Reading, Mass.: Addison-Wesley, 1999), Table 5.11,
183-186.

Test efforts are complex, and require that the test team possess a diversity of
expertise to comprehend the scope and depth of the required test effort and develop
a strategy for the test program.

In order for everyone on the test team to be aware of what needs to get done and
who will take the lead on each task, it is necessary to define and document the
roles and responsibilities of the test-team members. These should be
communicated, both verbally and in writing, to everyone on the team. Identifying
the assigned roles of all test-team members on the project enables everyone to
clearly understand which individua is responsible for each area of the prgject. In
particular, it allows new team members to quickly determl ne w&)@to\;mtg if an
issue arises.

In order to identify the individuals Sr%rm Ejlar task, atask
description should be cr € scope & & nderstood, it will be

easer to assg
To h@ &gréi}]c ag%nbgj?e task, work packages can be developed

and distributed to the members of the test team. Work packages typically include
the organization of the tasks, technical approach, task schedule, spending plan,
alocation of hours for each individua, and alist of applicable standards and
processes.

The number of test-engineering roles in a project may be greater than the number

of test-team members. (The roles required depend on the task at hand, as discussed
in Chapter 2.) Asaresult, atest engineer may "wear many hats," being responsible
for more than one role.

Table 13.1 shows some example responsibilities and skills required for each test-
program role.

Table 13.2. Example Test-Team Assignments

Roles and
Position |Products |Duties / Skills Responsibilities
Test Desktop |Responsible for test program, Manage test program
Manager (Web customer interface, test-tool
introduction, and staff recruiting and
supervision Skills: Management skills,
MS Project, Winrunner, SQL, SQL
Server, UNIX, VC++, Web applications,
test-tool experience
Test Desktop |Staff supervision, cost/progress/test [Reference the related
Lead Web status reporting, and test planning, testing requirements here]
design, development, and execution Develop automated test
Skills: TeamTest, Purify, Visual Basic, |scripts for functional test
SQL, Winrunner, Robot, UNIX, MS procedures
Access, C/C++, SQL Server
Test Desktop |Test planning, design, development, [Reference thegelated
Engineer Web and execution Defect identification and [testing r \}‘éﬂs here]
tracking Skills: Test-tool experlence ev@ arness
financial system experience \
Test Desktop |Test planning, desig Rerformance testing
Engineer |Web and executlo Ificati [Reference the related
trac mg‘g ttool p@ c esting requirements here]
Test s@‘n development, Configuration testing,

Tt

Enginge @ Defect identification and |installation testing
tracking Skills: Test-tool experience, [Reference the related
financial system experience testing requirements here]
Test Web Responsible for test tool environment, |Security testing
Engineer network, and middleware testing [Reference the related
Performs all other test activities Defect |testing requirements here]
identification and tracking Skills: Visual
Basic, SQL, CNE, UNIX, C/C++, SQL
Server
Jr. Test |Desktop |Performs test planning, design, [Reference the related
Engineer development, and execution Defect testing requirements here]

identification and tracking Skills: Visual
Basic, SQL, UNIX, C/C++, HTML, MS
Access

Table 13.2 identifies test-team positions and their assignments on the project,
together with the products they are working on. The duties that must be performed
by the person in each of the positions are outlined, as are the skills of the personnel

Message: successfully connected to dat abase
[dbserverl, custoner db]

Function: retrieveCustoner (custoner.cpp |line 20)

Machi ne: testsrvr (Pl D=2201)

Ti mestanp: 1/10/2002 20: 26: 56. 568

Message: attenpting to retrieve custoner record
for custoner | D [A1000723]

Function: retrieveCustoner (custoner.cpp |ine 25)
Machi ne: testsrvr (Pl D=2201)
Ti mestanp: 1/10/2002 20:26:57.12

Message: ERROR failed to retrieve custoner record,
nmessage [custoner record for I D A1000723
not found]

This log-file excerpt demonstrates afew of the major aspects %ﬁl |@\>‘r

logging that can be used for effective testing. a\e

In each entry, the function nameis |nd|$()l Wlth ile name and the line

number of the application ﬁ}g . The host and

process ID are al wel lﬂ%ﬁ en the entry was made. Each
e identities of components involved

| infor
e&ﬁ For ex abase server is "dbserverl,”" the database is
"customer_db," customer ID is"A1000723."

From thislog, it is evident that the application was not able to successfully retrieve
the specified customer record. In this Situation, a tester could examine the database
on dbserverl and, using SQL tools, query the customer _db database for the
customer record with ID A1000723 to verify its absence,

Thisinformation adds a substantial amount of defect-diagnosis capability to the
testing effort, since the tester can now pass such detailed information along to the
development staff as part of the defect report. The tester can report not only a
"symptom"but aso internal application behavior that pinpoints the cause of the
problem.

methodology and standards to be followed; and the testing schedule. If ausable
test plan (as discussed in Chapter 2) does not already exist, this information must
be gathered from other sources.

To break down the testing tasks, the following "what,” "when," "how," and "who"
questions should be answered.

What should be tested? During the test-planning phase, what to test and
what not to test will have been determined and documented as part of the
scope of testing.

When should test procedures be developed? In Item 3 we suggest that test
procedures be devel oped as soon as requirements are available. Once it has
been determined what to test, the sequence of tests must be established.
What needs to be tested first? The test planner should get to know the testing
priorities, and should become familiar with the build and release schedule.
Procedures for testing the high-priority items should be devel opedfjrst. One
exception: Certain functions may need to be run first to auh\ system

for other functions. These precur sor functlon b early, whether

they are high priority or not. (Fol $ ng features, see [tem 8)

Additiondly, risk yed to help prioritize

test proceRﬁN not po: eryth| ng, testers are forced to
ost

‘?ege) cri tlg Rlsk analysis provides a mechanism for
mining Whl

How should test procedures be designed? No single testing solution can
effectively cover al parts of a system. Test procedures for the different parts
of the system must be designed in the manner most appropriate for
effectively testing each of those specific parts.

In order to design the appropriate and most effective tests, it is necessary to
consder the parts that make up the system and how they are integrated. For
example, to verify functiona behavior of the system via the user interface,
test procedures will most likely be based on existing functional-requirements
statements, with test cases that execute the various paths and scenarios.
Another approach would be to begin by testing each field in the user
Interface with representative valid and invalid data, verifying the correct
behavior for each input. This would involve following a sequence of
execution paths, as, for example, when filling one field or screen produces
another GUI screen that aso requires data input.

Effective test design includes test procedures that rarely overlap, but instead
provide effective coverage with minimal duplication of effort (although duplication
sometimes cannot be entirely avoided in assuring compl ete testing coverage). It is
not effective for two test engineers to test the same functionality in two different
test procedures, unless thisis necessary in order to get the required functiona path
coverage (as when two paths use duplicate steps at some points).

It isimportant to analyze test flow to ensure that, during test execution, testsrun in
proper order, efforts are not unnecessarily duplicated, testers don't invaidate one
another's test results, and time is not wasted by producing duplicate or erroneous
findings of defects. Such findings can be time consuming for developers to
research and for testers to retest, and can skew the defect metricsif not tracked
correctly. The test team should review the test plan and design in order to:

|dentify any patterns of similar actions or events used by several
transactions. Given this information, test procedures should be deygloped in
amodular fashion so they can be reused and recombi %@ arious
functional paths, avoiding duplication of teﬁ-cr%

Determine the order or sequence [ransactions must be

tested to accommodate pr 2‘(ecute a test procedure,
such as database ¢ \gﬁ or o er that result from control
or Worlgi %'%
? ro matrix that incorporates the flow of the
procedures precondltlons and postconditions necessary to
execute a procedure. A test-procedure relationship diagram that showsthe
Interactions of the various test procedures, such as the high-level test

procedure relationship diagram created during test design, can improve the
testing effort.

The analyses above help the test team determine the proper sequence of test design
and development, so that modular test procedures can be properly linked together
and executed in a specific order that ensures contiguous and effective testing.

Another consideration for effectively creating test proceduresis to determine and
review criticd and high-risk requirements, in order to place a greater priority upon,
and provide added depth for, testing the most important functions early in the
development schedule. It can be a waste of time to invest effortsin creating test
procedures that verify functiondity rarely executed by the user, while failing to
create test procedures for functions that pose high risk or are executed most often.

Item 25: Use Proven Testing Techniques when Designing
Test-Case Scenarios

Item 10 discusses the importance of planning test data in advance. During the test-
design phase, it will become obvious that the combinations and variations of test
data that may be used as input to the test procedures can be endless. Since
exhaustive testing is usually not possible, it is necessary to use testing techniques
that narrow down the number of test cases and scenarios in an effective way,
alowing the broadest testing coverage with the least effort. In devising such tests,
It's important to understand the available test techniques.

Many books address the various white-box and black-box techniques.™ While test
techniques have been documented in great detail, very few test engineers use a
structured test-design technique. An understanding of the most widely used test
techniques is necessary during test design.

' For example: Boris Beizer, Software Testing T(éi()q\r,g4
(Hoboken N.J.: John Wiley & Sons, 19%6_ e

Using a combination of avallable en to be more
effective than focus ng onfust @ hnr prof sonals are
asked to identif .. set of % aprogram they are testing, they
are I| @Gﬁ out half of the test cases needed for an

esting effort s use guesswork to select test cases to execute,
there isa h| gh potential for unrelrabrlrty including inadequate test coverage.

Among the numerous testing techniques available to narrow down the set of test
cases are functional analysis, equivalence partitioning, path analysis, boundary-
value anadyss, and orthogona array testing. Here are afew points about each:

Functional analysisisdiscussed in detail in Item 22. It involves analyzing
the expected behavior of the system according to the functional
specifications and generating one test procedure or more for each function or
feature of the system. If the requirement is that the system provides function
X, then the test case(s) must verify that the system provides function x in an
adequate manner. One way of conducting functiona test analysesis
discussed in Item 22. After the functiona tests have been defined and
numerous testing paths through the gpplication have been derived, additional
technigues must be applied to narrow down the inputs for the functional
steps to be executed during testing.

As an example, consider an application that checks an input to ensure that it
Is greater than 10.

o Anin-bounds value would be 13, which is greater than 10.

o An out-of-bounds value would be 5, which is not greater than 10.

o Thevaue of 10 isactualy out-of-bounds, because it is not greater
than 10.

In addition to values that lie in or on the boundary, such as endpoints, BV
testing uses maximum/minimum values, or more than maximum or
minimum, and one less than maximum and minimum, or zero and null
Inputs. For example, when defining the test-input values for a numeric input,
one could consider the following:

o Doesthe field accept numeric values only, as specified, or doesit

accept aphabetic values?

o What happensif aphabetic values are entered? Do
accept them? If so, does the system pro [lessage?

o What happensif the input fleld ers that are reserved by
the application or by a ar nol example special

characters dsm % ons? Does the
cr when these reserved characters?

?hggstem sho@@@x%t aIIow out-of-bounds characters to be entered,

or instead should’handle them gracefully by displaying an appropriate error
message.

Orthogonal arrays alow maximum test coverage from a minimum set of
test procedures. They are useful when the amount of potential input data, or
combinations of that input data, may be very large, sinceit is usually not
feasible to create test procedures for every possible combination of inputs.””
2I'8. For more on orthogonal arrays, see Elfriede Dustin,
"Orthogonally Speaking," STQE Magazine 3.5 (Sept.-Oct.
2001). Also available at
http://www.effectivesoftwaretesting.com.

The concept of orthogonal arrays is best presented with an example.
Suppose there are three parameters (A, B, and C), each of which has one of
three possible values (1, 2, or 3). Testing al possible combinations of the
three pa rameters would require twenty-seven test cases (33). Are al twenty-

In addition to writing unit-test programs, the devel oper a'so must examine code
and components with other tools, such as memory-checking software to find
memory leaks. Having severa devel opers examine the source code and unit-test
results may increase the effectiveness of the unit-testing process.

In addition to writing the initial unit test, the developer of the component isin a
good position to update the unit test as modifications are made to the code. These
modifications could be in response to general improvements and restructuring, a
defect, or arequirement change. Making the developer who is responsible for the
code aso responsible for the unit test is an efficient way to keep unit tests up to
date and useful.

Depending on how unit tests are implemented, they could cause the build to halt—
making it fail to compile or produce a working executable—if the unit-test

program is part of the software build. For example, suppose a developer removes a
function, or method from a component's C++ interface. If a unit test hag pot been
updated and still requires the presence of this function to compj pa\ Yt will
fail to compile. This prevents continuing on to build ge;) ts of the
system until the unit test is updated. Tor , the developer must
adjust the unit-test program's code I the of the method from

the interface. This exam ngw@ It 'mw&n e developer to perform
any nece%\ry\tﬂ@ the unit teizrég;ém enever the code is changed.
Som&X\Neare project @z&%e successful unit-test execution, not just

compilation, for the build to be considered successful. See Item 30 for adiscussion
of this topic.

Unit tests must be written in an appropriate language capable of testing the code or
component in question. For example, if the developer has written a set of pure C++
classes to solve a particular problem or need, the unit test most likely must also be
written in C++ in order to exercise the classes. Other types of code, such as COM
objects, could be tested using tests written in Visual Basic or possibly with scripts,
such as VBScript, JScript, or Perl.

In alarge system, code is usually developed in a modular fashion by dividing
functiondity into severa layers, each responsible for a certain aspect of the
system. For example, a system could be implemented in the following layers:

Database abstraction. An abstraction for database operations wraps up™
database interaction into a set of classes or components (depending on the

successfully unit-tested system. The software is dways in atestable state, and does
not contain mgor errors in the components that can be caught by the unit tests.

A mgor issuein unit testing is inconsistency. Many software engineersfail to
employ a uniform, structured approach to unit testing. Standardizing and
streamlining unit tests can reduce their development time and avoid differencesin
the way they are used. Thisis especially important if they are part of the build
process, sinceit is easer to manage unit-test programsif they all behave the same
way. For example, unit-test behavior when encountering errors or processing
command-line arguments should be predictable. Employing standards for unit
tests, such as that unit-test programs al return zero for success and onefor failure,
leads to results that can be picked up by the build environment and used as a basis
for deciding whether the build should continue. If no standard isin place, different
developers will probably use different return vaues, thus complicating the
Stuation.

One way to achieve such standardization is to create a unit-t m\a)M‘k This
Is a system that handles processing of command-line al@eu any) and
star

reporting of errors. Typicaly, aframewor, é%e tup with alist of
tests to run, and then callstheml exa%pzl
Fr amewor k. Agg eat e ‘ng@‘

est (o

Fra % ner Test)
Fr am AddTe teltenlest)

Each test (i.e, CreateOrderTest, CreateCustomerTest, and CreateltemTest) isa
function somewhere in the unit-test program. The framework executes al of these
tests by calling these functions one by one, and handles any errors they report, as
wdll as returning the result of the unit test as whole, usudly passor fail. A
framework can reduce unit-test development time, since only the individual tests
need be written and maintained in each layer, not all of the supporting error-
handling and other execution logic. The common unit-test functions are written
only onetime, in the framework itself. Each unit-test program smply implements
the test functions, deferring to the framework code for al other functionaity, such
as error handling and command-line processing.

Since unit-test programs are directly related to the source code they test, each
should reside in the project or workspace of its related source code. This allows for
effective configuration management of the unit tests with the components being
tested, avoiding "out-of-sync" problems. The unit tests are so dependent upon the

avalabletools, listed in Table 31.1, that support the various testing phases.
Although other tools, such as defect-tracking tools and configuration-management
tools, are also used in most software projects, the table lists only tools specific to
test automation.

All of thetools listed in Table 31.1 may be vauable for improving the testing life
cycle. However, before an organization can decide which tools to purchase, an
analysis must be conducted to determine which of the toals, if any, will be most
beneficial for a particular testing process. The capabilities and drawbacks of atool
are examined by comparing the current issues to be solved with atarget solution,
evaluating the potential for improvement, and conducting a cost/benefit analysis.
Before purchasing any tool to support a software engineering activity, such an
evauation should be performed, smilar to the automated test tool evaluation
process described in Item 34.

Table 31.1. Test Tools \(
Type of Tool Description ‘ ~ CO- U
Test-Procedure Generate test pr
Generators requiremey/d3Ai Je,qtmodels

Code (Test) Coverage tested code §nd/support dynamic testing
Analyzers and-Cé(c(N ﬂmmn 6(‘8

Instryy Y=
MemVy‘Leak P GAedly that an application is properly managing its
Detection memory resources

Metrics-Reporting Tools|Read source code and display metrics information,
such as complexity of data flow, data structure,
and control flow. Can provide metrics about code
size in terms of numbers of modules, operands,
operators, and lines of code.

Usability-Measurement \User profiling, task analysis, prototyping, and user

Tools walk-throughs

Test-Data Generators |Generate test data

Test-Management Provide such test-management functions as test-

Tools procedure documentation and storage and
traceability

Network-Testing Tools |Monitoring, measuring, testing, and diagnosing
performance across entire network

GUI-Testing Tools Automate GUI tests by recording user interactions

(Capture/Playback)

with online systems, so they may be replayed
automatically

Load, Performance,

and Stress Testing
Tools

Load/performance and stress testing

Specialized Tools

Architecture-specific tools that provide specialized
testing of specific architectures or technologies,
such as embedded systems

Following are some key points regarding the various types of testing tools.

Test-procedure generators. A requirements-management tool may be
coupled with a specification-based test-procedure (case) generator. The
requirements-management tool is used to capture requirements information,

creates test procedures by statistical, algorithmic, or heurlst

whichis then processed by the test-procedure generator. The gensator

statistical test-procedure generation, the tooI cho ures and
valuesin a statistically random distribut _@ utlon that matches
the usage profile of the software

Most often, t
state-qwi

KeFentkind of

éﬁ&i@ genfz@er@ﬁy @tlon data, logic, event, and

rategies is employed to probe for a
ect. When generating test procedures by

euristic or failure-directed means, the tool uses information provided by the
test engineer. Failures the test engineer has discovered frequently in the past
are entered into the tool. The tool then becomes knowledge-based, using the
knowledge of historical failures to generate test procedures.

Code-coverage analyzers and code instrumentors . Measuring structural
coverage enables the devel opment and test teams to gain insight into the
effectiveness of tests and test suites. Tools in this category can quantify the
complexity of the design, measure the number of integration tests required to
qualify the design, help produce the integration tests, and measure the
number of integration tests that have not been executed. Other tools measure
multiple levels of test coverage, including segment, branch, and conditional
coverage. The appropriate level of test coverage depends upon the criticaity
of aparticular application.

For example, an entire test suite can be run through a code-coverage tool to
measure branch coverage. The missing coverage of branches and logic can
then be added to the test suite.

Memory-leak detection tools . Tools in this category are used for a specific
purpose: to verify that an application is properly using its memory resources.
These tools ascertain whether an application is failing to release memory
alocated to it, and provide runtime error detection. Since memory issues are
involved in many program defects, including performance problems, it is
worthwhile to test an application's memory usage frequently.
Usability-measurement tools . Usability engineering is awideranging
discipline that includes user-interface design, graphics design, ergonomic
concerns, human factors, ethnography, and industrial and cognitive
psychology. Usability testing is largely a manual process of determining the
ease of use and other characteristics of a system's interface. However, some
automated tools can assist with this process, although they shoul

replace human verification of the interface.”? CO

?I Elfriede Dustin et al., 3 & E‘Sad\ner 7.5 in Quality

Web Systems: P ecué Ak_d Usability
(Boston, ﬂ@ on- 3’

bgerators d% erators aid the testing process by

matlcally g he test data. Many tools on the market support the
generation of test data and populating of databases. Test-data generators can
popul ate a database quickly based on a set of rules, whether datais needed
for functiona testing, data-driven load testing, or performance and stress
testing.
Test-management tools . Test-management tools support the planning,
management, and analysis of all aspects of the testing life cycle. Some test-
management tools, such as Rational's TestStudio, are integrated with
requirement and configuration management and defect tracking tools, in
order to smplify the entire testing life cycle.
Network-testing tools . The popularity of applications operating in client-
server or Web environments introduces new complexity to the testing effort.
The test engineer no longer exercises asingle, closed application operating
on asingle system, asin the past. Client-server architecture involves three
separate components. the server, the client, and the network. Inter-platform
connectivity increases potentia for errors. As aresult, the testing process
must cover the performance of the server and the network, the overal

compatible with the application under test and devoting further resources to
creating awork-around solution, it may be more beneficial to create a home-
grown set of testing scripts or other custom tool.

Soecialized testing needs . For the most efficient testing, specidized,
automated testing scripts are often required to augment formal, vendor-
provided tool-based testing. Often atest harness must be developed as an
enhancement to the GUI testing tool, to cover the automated testing for a
complex, critical component that the GUI testing tool cannot reach.

If the decision is made to build a tool, there are important steps to follow.
Assuming the task at hand is understood and the tests lend themselves to this type
of automation, these steps include:

Determine the resources, budgets, and schedules required for building the
testing tool well in advance.

Get buy-in and approva from management for this effort.

Treat the development of the testing tool as a part of the

devel opment effort.

Manage the tool's source code in v é‘;@ the rest of system. If

the tool isn't versoned, it WM of MZ th the software and

cease to function 3}@ %

Tresat the wﬁ\ of th @Ol% amain objective. When building
eg(@ Q‘WJ seldom is pursued with all of the best

elopment pr are important for producing a solid piece of

software—and the tool itself may contain bugs or be difficult to implement

and maintain.

Aswith any piece of code, test the home-grown testing tool itself to verify

that it works according to its requirements. It is critical that a testing tool not
produce fal se negatives or false postives.

The process of building atool can range from writing asimple batch file or Perl
script to creating a complex C++ application. The appropriate language with which
to build the tool depends on the task at hand and the function of the test. For
example, if the function of the test isto thoroughly exercise a complex C++
caculation DLL using some or dl of its possible inputs, a suitable solution may be
another C++ program that directly calls the DLL, supplying the necessary
combinations of test values and examining the results.

In addition to exploring testing tools on the market and considering building
custom tools, it may also be worthwhile to investigate the many free or shareware

Surprising as it may seem, there is a good chance that the test effort will
initidly increase when an automated test tool isfirst brought in. Introducing
an automated test tool to a new project adds a whole new level of
complexity to the test program. And, in addition to accounting for the
learning curve for the test engineers to become proficient in the use of the
automated tool, managers must not forget that no tool will eiminate all need
for manua testing in a project.

Test schedules do not decrease. A related misconception about automated
testing is that the introduction of an automated testing tool on a new project
will immediately reduce the test schedule. Since the testing effort actualy
Increases when an automated test tool isinitially introduced, the testing
schedule cannot be expected to decrease at first; rather, allowance must be
made for schedule increases. After all, the current testing process must be
augmented, or an entirely new testing process must be developed and
Implemented, to allow for the use of automated testing tools. An mated
testing tool will provide additional testi ng coverage, but e@ n erate
immediate schedule reductions.

Automated testing follows the soft t I|fe cycle. Initid
introduction of automated ss of the application
under test to det ﬁ lon can be automated.
It also @ﬁ' attentlozvlg re design and development. The
having its own mini-devel opment life
E/J‘Ij compl ete Wit lanning and coordination issues attendant to any
devel opment effort.

A somewnhat stable application is required. An application must be
somewhat stable in order to automate it effectively using a capture/playback
tool. Often, it isinfeasible or not possible for maintenance reasons, to
automate against portions of the software that keep changing. Sometimes
automated tests cannot be executed in thelr entirety, but must be executed
only partway through, because of problems with the application.

Not all tests should be automated. As previously mentioned, automated
testing is an enhancement to manual testing, but it can't be expected that all
tests on a project can be automated. It isimportant to analyze which tests
lend themselves to automation. Some tests are impossible to automate, such
as verifying a printout. The test engineer can automatically send a document
to the printer —a message can even pop up that says, "printed
successfully"—~but the tester must verify the results by physically walking
over to the printer to make sure the document really printed. (The printer
could have been off line or out of paper. The printout could be misaligned,

being used, so scripts have to be repeatedly re-created, causing much wasted
effort. Early training in use of the tool would eliminate much of this work.

Testing tools can be intrusive. Some testing tools are intrusive; for the
automated tool to work correctly, it may be necessary to insert special code
into the application to integrate with the testing tool. Devel opment engineers
may be reluctant to incorporate this extra code. They may fear it will cause
the system to operate improperly or require complicated adjustments to
make it work properly.

To avoid such conflicts, the test engineers should involve the devel opment
staff in selecting an automated tool. If the tool requires code additions (not
all tools do), developers need to know that well in advance. To help reassure
developers that the tool will not cause problems, they can be offered
feedback from other companies that have experience using the tool, and can
be shown documented vendor claims to that effect. \4

(code inserted specifically to facilitate tqsi nstrumentation could
interfere with the norma fun io&i@@ Sy ression tests on the
production-ready, ode may 6‘3@2 ensure that there are
no tool-re} 6 A.

X :
: ?egt%\t,ools cal @t@%ic%ble. Aswith dl technologies, testing tools

can be unpredictable. For example, repositories may become corrupt,
baselines may not be restored, or tools may not always behave as expected.
Often, much time must be spent tracking down the problem or restoring a
back-up of a corrupted repository. Testing tools are also complex
applications in themselves, so they may have defects that interfere with the
testing effort and may require vendor-provided patches. All of these factors
can consume additional time during automated testing.

Automaters may lose sight of the testing goal. Often, when anew tool is
used for the first time in atesting program, more time is spent on automating
test scripts than on actual testing. Test engineers may become eager to
develop elaborate automation scripts, losing sight of the real godl: to test the
application. They must keep in mind that automating test scriptsis part of
the testing effort, but doesn't replace it. Not everything can or should be
automated. As previously mentioned, it's important to evaluate which tests
lend themsealves to automation.

Intrusive tools pose the risk that defects introdgé @%1 ng hooks

When planning an automated testing process, it's important to clearly define the
division of duties. It's not necessary for the entire testing team to spend itstime
automating scripts; only some of the test engineers should spend their time
automating scripts. The engineers selected for this work should have backgrounds
In software development.

Item 34: Focus on the Needs of Your Organization

Anyone participating in test engineer user-group discussions™ will frequently
encounter the following questions: "Which testing toal is the best on the market?
Which do you recommend?"

™ Two good examples of such discussions are the Web site
http://www.gaforums.com and the Usenet newsgroup
comp.software.testing.

Users will respond with as many different opinions as there are cﬁ/ Ms to the
testing forum. Often a user most experienced with a parn‘@r ooMitl argue that
that specific tool is the best solution. \,65

However, the most usef dgnmmhmpular %’A—"It depends." Which
en

testing tool is b&i |zati on and the system-

engin m\q %@mg methodology, which will, in
part, @t ow auton@ o the testing effort.

Following is alist of best practices to consider when choosing a testing tool:#

2 For additional information on tool evaluation, see Elfriede
Dustin et al., Automated Software Testing (Reading, Mass.:
Addison-Wesley, 1999), 67-103.

Decide on the type of testing life-cycle tool needed. If the automation task is
an organization-wide effort, gather input from all stakeholders. What do they
want the automation to accomplish? For example, it may be that in-house
users of the system under test would like to use the tool for user-acceptance
testing. Determine what is expected from automation, so those expectations
can be managed early on, as discussed in [tem 33.

Sometimes a test manager isinstructed to find atool that supports most of
the organization's testing requirements, if feasible. Such a decision requires
consdering the systems-engineering environment and other organizationd

Know the types of tests to be developed. Since there are many types of test
phases for any given project, it is necessary to select the types of testing of
interest. The test strategy should be defined at this point so the test team can
review the types of tests needed—regression testing, stress or volume
testing, usability testing, and so forth. Questions to ask to help determine
types of tests to employ include: What is the most important feature needed
in atool? Will the tool be used mainly for stress testing? Some test tools
gpecidizein sour ce code cover age analysis. That is, they identify al of the
possi ble source-code paths that must be verified through testing. Is this
capability required for the particular project or set of projects? Other test-
tool applications to consider include those that support process automation
and bulk data loading through input files. Consider what the test team hopes
to accomplish with the test tool. What is the goal? What functionality is

desired?

Know the schedule. Ancther concern when selecting atest tool isits fit with
and impact upon the project schedule. It isimportant to review er there
will be enough time for the necessary testersto learn the@@vj the
constraints of the schedule. When thereisn tite In the project
schedule, it may be advisable n Q'Y' automated test tool. By
postponing the mtroductlo Og

mo ortune time, the test

team may avoid t perhaps salecting the

wron %g org izatio &er Case, the test tool likely will not be

@ éc ght otherwise become champions for
automated testin stead become the biggest opponents of such tools.
Know the budget. Once the type of tool required has been determined, it may
be tempting to go after the best of the breed. However, it isimportant to take
into account the available budget. It's possible to spend months evaluating
the most powerful tool, only to find out that its costs exceeds the budget.
Additionally, a budget might be needed for training to bring people up to
speed on the tool, or additional staffing resources may be required if thereis
no developer on the testing team.

Most importantly, testers should remember that there is no one best tool for all
environments out there on the market. All tools have their pros and cons for
different environments. Which tool is the best depends on the system-engineering
environment and other organizational specific requirements and criteria,

To work around the limitations of an automated testing tool and allow deeper
testing of core components, a test harness can be developed. Usually writtenin a
robust programming language, as in a stand-alone C++ or VB program, a custom-
built test harness typically is faster and more flexible than an automated test-tool
script that may be constrained by the test tool's specific environment.

For an example of atesting task appropriate for atest harness, take an gpplication
whose purpose is to compute cal cul ations based on user-supplied information and
then generate reports based on those computations. The computations may be
complex, and sengitive to different combinations of many possible input
parameters. As aresult, there could be millions of potential variations that produce
different results, making comprehensive testing of the computations a significant
undertaking.

It is very time-consuming to develop and verify thousands of computational test
cases by hand. In most cases, it would be far too ow to execute alar E\glume of
test cases through the user interface. A more effective aterndti é

develop atest harness that executes test cases agal nst |QI n's code,

typicaly below the user-interface layer, Sﬁl{@ re components

Another way to use atest e\@?m nent against alegacy
component or » two sy ent data-storage formats, and
haverﬁeg i terfaces t@llf ttechnologles In such acase, any

auto tést tool wo &me a special mechanism, or duplicate automated test
scripts, in order to run identical test cases on the two systems and generate
comparable results. In the worst case, a single testing tool is not compatible with
both systems, so duplicate test scripts must be developed using two different
automated testing tools. A better alternative would be to build a custom, automated
test harness that encapsulates the differences between the two systems into separate
modules and allows targeted testing to be performed against both systems. An
automated test harness could take the test results generated by alegacy system asa

basdline, and automatically verify the results generated by the new system by
comparing the two result sets and outputting any differences.

One way to implement thisis with atest harness adapter pattern. A test-harness
adapter isamodule that trandates or "adapts' each system under test to make it
compatible with the test harness, which executes pre-defined test cases against
systems through the adapters, and stores the results in a standard format that can be
automatically compared from one run to the next. For each system to be tested, a
specific adapter must be developed that is capable of interacting with the system—

directly against its DLLs or COM objects, for example—and executing the test
cases against it. Testing two systems with a test harness would require two

different test adapters and two separate invocations of the test harness, one for each
system. The first invocation would produce a test result that would be saved and
then compared against the test result for the second invocation. Figure 37.1 depicts
atest harness capable of executing test cases againgt both alegacy system and a
new system.

Figure 37.1. Basic Test-Harness Architecture

Test Cases

Test Horness Adapter
(legacy System)

—— legacy Syslem \(

Test Harness

o .e\l\l
P \{ e}él‘r}ewll P age

|dentical test cases can be run againgt multiple systems using a test harness adapter
for each system. The adapter for alegacy system can be used to establish a set of
baseline results against which the results for the new system can be compared.

The test-harness adapter works by taking a set of test cases and executing themin
sequence directly against the application logic of each system under test, bypassing
the user interface. Bypassing the user interface optimizes performance, allowing

for maximum throughput of the test cases. It also provides greater stability. If the
test harness relied upon the user interface, any change to the interface (which often
undergoes extensive revision during the development life cycle) could cause the
test harness to report false positives. Reviewing such results would waste precious
time.

Results from each test case are stored in one or more results files, in aformat (such
as XML) that is the same regardless of the system under test. Results files can be

retained for later comparison to results generated in subsequent test runs. The
comparisons can be performed by a custom-built result-comparison tool
programmed to read and evaluate the results files and output any errors or
differences found. It is also possible to format the results so they can be compared
with a standard "file diff" (file-difference comparison) tool.

Aswith any type of testing, test harness test cases may be quite complex,
especidly if the component tested by the harnessis of a mathematical or scientific
nature. Because there are sometimes millions of possible combinations of the
various parameters involved in calculations, there are a so potentially millions of
possible test cases. Given time and budget congtraints, it is unlikely that all
possible cases will be tested; however, many thousands of test cases can feasibly
be executed using a test harness.

With thousands of different test cases to be created and executed, test-case
management becomes a significant effort. Detailed below isagenerd str for
developing and managing test cases for use with atest harn&sc'l'@ @IS aso
applicable to other parts of the testing effort

1. Createtest cases. Test C Zjh eloped in the same
fashion as for man S g vari £ ques. A test

technlque;) appr, ng test conditions that give a
‘gx@ ?ty of fw Instead of guessing at which test cases to
0, test tec p testers derive test conditions in arigorous and

systematic way. A number of books on testing describe testing techniques
such as equivalence partitioning, boundary-value analysis, cause-effect
graphing, and others. These are discussed in detail in Item 25, but a brief
overview is provided here:

o Equivalence partitioning identifies the ranges of inputs and initial
conditions expected to produce the same results. Equivalence relies on
the commonality and variances among the different stuationsin
which a system is expected to work.

o Boundary-valuetesting is used mostly for testing input-edit logic.
Boundary conditions should always be part of the test scenarios,
because many defects occur on the boundaries. Boundaries define
three sets or classes of data: good, bad, and on-the-border (in-bound,
out-of-bound, and on-bound).

o Cause-effect graphing provides concise representations of logical
conditions and corresponding actions, shown in graph form with
causes on the left and effects on the right.

o Orthogonal-array testing enables the selection of the combinations
of test parameters that provide maximum coverage using a minimum
number of test cases. Orthogonal-array test cases can be generated in
an automated fashion.

2. Establish a common starting point. All testing must begin at a well-defined
starting point that is the same every time the test harness is executed.
Usually, this means the data used in each system during each test must be
the same so that the results can be properly compared. When each modular
test component is reused, it will be able to set the application state back to
the way it found it for the next test component to run. Were this not the case,
the second test component would always fail, because the assumed starting
point would be incorrect.

3. Manage test results. Test scripts produce results for every transaction set
they execute. These results are generaly written to afile. A single test script
can write results to as many files as desired, though in most cases asingle

file should be sufficient. When running a series of test cases, test-
results files are created. Once basdlined, any given test produce
the same results every time it is executed, t @H can be compared
directly viasmple fi Iecomparl w usi g a custom-devel oped
test-results comparlson to r| ng comparisons
must be evaluat £y(d@ﬁ d track to closure the
defectw@ ose dlff e';?

A cu m—bth test ha%agprowde aleve of testing above and beyond that of
automated test-tool scripts. Although creating a test harness can be time-
consuming, it offers various advantages, including deeper coverage of sensitive
application areas and ability to compare two applications that cannot be tested
using a single off-the-shelf test tool.

Iltem 38: Use Proven Test-Script Development Techniques

Test-script development can be regarded as a software development project of its
own. Proven techniques should be used to produce efficient, maintainable, and
reusable test scripts. Thiswill require some additional work on the part of the test
team, but in the end the testing effort will profit from a more effective automated
testing product.

Consder the following techniques when developing test scripts using functional
testing tools.

success. The argument may aso be made that nonfunctional issues can be
addressed at alater time, such as with a version upgrade or patch.

Unfortunately, this approach can lead to problems in the application's
implementation, and even increased risk of failure in production. For example,
ignoring security on a Web application for the sake of implementing functiondity
may leave it vulnerable to attack from malicious Internet users, which in turn can
result in downtime, loss of customer data, and negative public attention to the Site,
ultimately resulting in loss of revenue. As another example, consider an application
that is functionally complete, but unable to process a sufficient amount of customer
data. Although the application provides the proper functions, it is useless because it
does not meet the customer's needs. Again, problems like these can lead to
negative publicity for the application and lost customers. These kinds of problems
can often undo the effort spent to implement functionality, and can take an
enormous amount of effort to correct.

Nonfunctional considerations ideally are investigated early in |I@¥‘S
architecture and design phases. Without early attentloalxn ects of the
implementation, it may be difficult or im odify or add
components to satisfy the nonfun m ent ider the following

examples: .‘(O
tl)ebd\:%on er f Ql%o appllcatlons aretypically developed in
env

ironm as one consisting of asingle Web server and a
single database server. In addition, when the system is first placed into
production, it is most cost effective to use the minimum hardware necessary
to sarvice the initialy small number of users. Over time, however, the load
on the Web application may increase, requiring a corresponding increase in
the site's hardware capacity to handle the load. If the hardware capacity is
not increased, users will experience performance problems, such as
excessive time for loading pages and possibly even time-outs at the end-
user's browser. Typically, Web-site capacity isincreased by adding several
machines to the site to scal e the Web agpplication to achieve higher
performance. If this type of expansion was not considered in the
application's original architecture and implementation, considerable design
and implementation changes may be required to achieve scalability. This
results in higher costs, and, perhaps worst of al, considerable delay as
engineers work to develop and roll out the improved production site.

Use of an incompatible third-party control. One way to increase an
application's functionality while reducing development time is to use third-

requirements. This eliminates the need to repeatedly state the same nonfunctional
concerns in every requirements document.

Nonfunctional requirements are usually documented in two ways:

1. A system-wide specification is created that defines nonfunctional
requirements for al use casesin the system. An example: "The user
interface of the Web system must be compatible with Netscape Navigator
4.x or higher and Microsoft Internet Explorer 4.x or higher."

2. Each requirement description contains a section titled "Nonfunctional
Requirements,” which documents any specific nonfunctional needs of that
particular requirement that differ from the system-wide specifications.

ltem 42: Conduct Performance Testing with Production-Sized
Databases

Testing teams responsible for an application that manages dataégt Be\%'n zant

that applrcatlon performance typically degrades asth astored by the

application increases. Database and ap| on technrques can gregtly

reduce this degradation. It is criti ?ﬁd‘m teﬂér%&lrcatron to ensure that
oy

optimization has been su

To C perform ata sets of different sizes, it isusualy
ﬁ?rest with @aag%camsets For example, an application may be

tested with 1, 100, 500, 1,000, 5,000, 10,000, 50,000, and 100,000 records to

Investigate how the performance changes as the data quantity grows. This type of

testing also makes it possible to find the "upper bound" of the application's data

capability, meaning the largest database with which the application performs
acceptably.

It is critical to begin application performance testing as soon as possible in the
development life cycle. This allows performance improvements to be incorporated
while the application is till under development, rather than after significant
portions of the application have been developed and tested. Early on, it is
acceptable to focus on general performance testing, as opposed to performance
fine-tuning. During the early stages, any glaring performance problems should be
corrected; finer tuning and optimization issues can be addressed later in the
development cycle.

their own securlt}/ -related requirements, such as maximum lengths for user-
supplied inputs.™

™ Input-length checking is vital for preventing buffer-overflow

attacks on an application. For more information, see Elfriede

Dustin et al., Quality Web Systems (Boston, Mass.: Addison-
Wesley, 2002), 76-79.

With the security-related requirements properly documented, test procedures can
be created to verify that the system meets them. Some security requirements can be
verified through the application’'s user interface, asin the case of input-length
checking. In other cases, it may be necessary to use gray-box testing, as described
in [tem 16, to verify that the system meets the specified requirement. For example,
the requirements for the log-on feature may specify that user name and password
must be transmitted in encrypted form. A network-monitoring program must be
used to examine the data packets sent between the client and the server t&z;rlfy
that the credentials are in fact encrypted. Still other requi remen&rﬁy

analysis of database tables or of files on the server's fg\

In addition to security concerns th JSreelat ticular requirements,
a software project has sec Gﬁﬁ' . and therefore are
rel ated to the M | ectu ﬂ pI ementatl on. For example, a

t that all private customer data of
any k ored i |n rm in the database. Because this requirement will
undoubtedly apply to many functional requirements throughout the system, it must
be examined relative to each requirement. Another example of a system-wide
Security requirement is a requirement to use SSL (Secure Socket Layer) to encrypt
data sent between the client browser and the Web server. The testing team must
verify that SSL is correctly used in al such transmissions. These types of

requirements are typically established in response to assessments of risk, as
discussed in Item 41.

Many systems, particularly Web applications, make use of third-party resources to
fulfill particular functiona needs. For example, an e.commerce site may use a
third-party payment-processing server. These products must be carefully evaluated
to determine whether they are secure, and to ensure that they are not employed
improperly, in ways that could result in security holes. It is particularly important
for the testing team to verify that any information passed through these
components adheres to the global security specifications for the system. For
example, the testing team must verify that a third-party payment-processing server

user can see and change the data. Once changes are made, the data is sent back to
the server, and the database record for that order is updated. Now, if two users
simultaneoudy have the editing dialog open for the same record, they both have
copies of the datain their local machines memory, and can make changesto it.
What happens if they both choose to save the data?

The answer depends on how the application is designed to deal with concurrency.
Managing multiuser access to a shared resource is a challenge that dates back to
the introduction of multiuser mainframes. Any resource that can be accessed by
more than one user requires software logic to protect that resource by managing the
way multiple users can access and change it at the same time. This problem has
only become more common since the advent of network file sharing, relational
databases, and client-server computing.

There are several ways for a software application to dea with concurrency. Among
these are the following: \4

dEa.Q b%é user hasa

Pessmistic. This concurrency model places|o
record open and any other users attem data in a context that
alows editing, the system denj .Int eceding example, the

first user to open th&&r rieditin geﬁ& the order record.
Sub%que&tﬁﬁﬁat pting m?& will be sent a message
?xe@d e order ger ng edited by another user, and will
0 wait untlvt}uai user saves the changes or cancels the operation.
This concurrency model is best in situations when it is highly likely that
more than one user will attempt to edit the same data at the same time. The
downside with this model is that others users are prevented from accessing
data that any one user has open, which makes the system less convenient to
use. Thereis also a certain amount of implementation complexity when a
system must manage record locks.
Optimistic. In the optimistic concurrency model, users are aways allowed to
read the data, and perhaps even to update it. When the user attempts to save
the data, however, the system checks to see if the data has been updated by
anyone else since the user first retrieved it. If it has been changed, the update
falls. This approach allows more users to view data than does the pessimistic
model, and istypically used when it is unlikely that several userswill
attempt to edit the same data at the same time. However, it isinconvenient
when a user spends time updating a record only to find that it cannot be
saved. The record must be retrieved anew and the changes made again.

the organization should be standardized where possible, and based upon criteria
that have been proven in several projects.

It may be determined that the system can ship with some defects to be addressed in
alater release or a patch. Before going into production, test results can be analyzed
to help identify which defects must be fixed immediately versus which can be
deferred. For example, some "defect” repairs may be reclassified as enhancements,
and then addressed in later software releases. The project or software development
manager, together with the other members of the change-control board, are the
likely decision-makers to determine whether to fix a defect immediately or risk
shipping the product with the defect.

Additional metrics must be evaluated as part of the exit criteria. For example:

What is the rate of defect discovery in regression tests on previoudy
working functions—in other words, how often are defect fixes bre%ng
previoudly working functionality? U

How often are defect corrections failing, meani g‘l@ gGéQT‘thought to be
fixed actually wasn't?

S
What is the trend in the rate dgk@&gn dﬁeﬂg as this testing phase
proceeds? The def |ngtrate shou&‘e% irig as testing proceeds.
Testi % &%}g‘ed g@)ge%g%e application isin an acceptable state
t0go

to shi live, m it criteria, even though it most likely contains
defects yet to be discovered.

In aworld of limited budgets and schedules, there comes a time when testing must
halt and the product must be deployed. Perhaps the most difficult decision in
software testing is when to stop. Establishing quality guidelines for the completion
and release of software will enable the test team to make that decision.

Iltem 48: Isolate the Test Environment from the Development
Environment

It isimportant that the test environment be set up by the time the testing team is
ready to execute the test strategy.

The test environment must be separated from the development environment to
avoid costly oversights and untracked changes to the software during testing. Too
often, however, thisis not the case: To save costs, a separate test environment is
not made available for the testing team.

information the program displayed, as well as the correct information
(expected result).

Retest failure. If the defect still appears upon retesting, provide details
describing the failure during retest.

Category. The category of behavior being reported may be "defect,”
"enhancement request,” or "change request.” The priority of a"change
request” or "enhancement request” remains N/A until it is actively being
reviewed.

Resolution. Developers are to indicate the corrective action taken to fix the
defect.

In reporting defects, granularity should be preserved. Each report should cover
just one defect. If several defects are interrelated, each should have its own entry,
with a cross-reference to the others.

2 Prioritization \4

The process must define how to assign alevel of p Jolf eﬁ%ect The test
engineer initially must assess how serloust e successful
operation of the system. The mo E& areto fal and
prevent test activity from ﬁg\D ects cmeferred to achange-
control board (er eval osition, as discussed in Item 4.

A co%Xn%efect prlo@@@%auon scheme is provided below.

1. Showstopper— Testing cannot continue because the defect causes the
application to crash, expected functionality is not implemented, and so on.

2. Urgent— Incident is extremely important and requires immediate attention.

3. High— Incident is important and should be resolved as soon as possible
after Urgent items.

4. Medium— Incident isimportant but can be resolved in a reasonably longer
time frame because awork-around exists.

5. Low— Incident is not critical and can be resolved as time and resources
dlow.

6. N/A— Priority is not applicable (e.g., for change and enhancement
requests).

Defect priority levels must to be tailored to the project and organization. For some
projects, asmple "High/Low" or "High/Medium/Low" system may suffice. Other
projects may need many more levels of defect prioritization. However, having too

The Value of Mobile Application Testing

. Executive Summary

This overview has been prepared by NSTL, Inc., the world’s leading mobile testing and
quality assurance services organization. It is being offered to provide insight into mobile

application development challenges and beneficial testing methodologies.

The international mobile marketplace is growing across all market segments. According to a
report from Strategy Analytics, early mobile adopters alone will account for nearly $88 billion
dollars in mobile service revenues in 2004 and worldwide revenues from mobile data services
will increase from $61 billion in 2004 to $189 billion in 2009. Mobile entertainment
applications are expected to account for 28% of those revenues in 2009. In terms of
worldwide growth, In-Stat/MDR reports that the mobile handset market will see an increase of
14.5% in total subscribers from 2003.

What all of these statistics indicate is that, first, worldwide usage of mobile products i§ g \i

to continue to grow. As mobile handsets embrace new technologies X%s

and as consumer comfort with using mobile products ¢ &H‘e mobile

applications marketplace should continue to bN {lgne To alize this potential,

mobile application developer: facturers a zgrunderstand the

need to requwe tes s'g;g‘guran ? 6035 the industry. This movement
e

to obile ap I|
doing so, there is mucht

While there will always be a need for diversification and platforms, the increasingly popular

quirements has already begun to unfold. By

sentiment is that there exists a need for standardization in the testing requirements of
operators and within each of the individual platforms. This overview of the mobile application
marketplace, takes a brief look into current challenges and benefits of creating these industry
standards for mobile application testing for developers, operators, handset manufacturers and

consumers too.

© 2004, Orange™ Page 3 of 17

The Value of Mobile Application Testing

With better quality control, consumers benefit from increased confidence and more powerful
handset capabilities and functionality. With increased application support and accountability,
consumers will have more comfort adopting these new mobile technologies.

Operators gain assurances that the quality of applications being tested will be held to a
higher set of standards in terms of both quality and network security, Further, application

interoperability means lower QA costs and less user downtime.

There are benefits of testing and QA throughout the global mobile marketplace.
Standardization in testing requirements across operator networks and within platform

environments will help to create a mobile environment that is truly without boundaries.

Il. Challenges for Mobile Application Developers

uk

Historically, application developers have been able to create softaﬁ @ gﬁ@the market
the way most products come to market. There were els, such as retail,
VARSs, online and printed catalogs Int &ment Ik‘atlons are
developed for |nclu3|on on a enable eRd u oad new applications
specmc to their \hfdel and/o %Advent of mobile platforms capable of

\rons has % markets for developers, while the nature of the
cellular mdustry has creamo stacles to market. Now, device manufacturers, platform
owners, and mobile operators each have a “gatekeeper’s” share of the road to market. Each
stakeholder has specific requirements of which developers must be aware and to which they

must adhere. The most widely available path to market is not through those applications that

are embedded into a mobile device prior to its market launch.

For developers considering the mobile market, there are many unique — and distinct —
challenges that must be successfully navigated before an application can be brought to
market. To begin to understand the environment in which developers must operate, the
equation begins by accounting for the challenges that all software developers must address.
Add to that the challenges of a crucial need for timely market launch, cost-effective
management of the testing process and a constant need to refresh platform, operator and
handset expertise. The tools required to navigate the “maze to market” and solve the
equation quickly and effectively are crucial to the success of each and every mobile

application developer.

© 2004, Orange™ Page 5 of 17

Severity

The severity tells the reader of the bug how bad the problem is. Or in other words, say what the
results of the bug are. Here’s a common list for judging the severity of bugs. There is sometimes
disagreement about how bad a bug is. This list takes the guess work out of assigning a severity to bugs.

Rating Value
Blue screen 1
Loss without a work around 2
Loss with a work around 3
Inconvenient 4
Enhancement 5

Likelihood
Put yourself in the average user’s place. How likely is a user to encounter this bug? While the
tester may encounter this bug every day with every build, if the user isn’t likely to see it, how bad can the

bug be?
Rating Value
Always 1 \)\4
Usually 2 a\e .
Sometim O‘,@S

ANOTL L
o ovieW “;g%m of ©
Severity * Likelihood = Rati? a‘

Computing the rating of a bug is done by multiplying the numeric value given to the severity and
likelihood status’. Do the math by hand or let your defect tracker do it for you.

The trick is to remember that the lower the number, the more severe the bug is. The highest
rating is a 25 (5 X 5), the lowest is 1 (1 X 1). The bug with a 1 rating should be fixed first while the bug
with a 25 rating may never get fixed.

Looking at a list of these bugs ordered by rating means the most important ones will be at the top
of the list to be dealt with first. Sorting bugs this way also lets management know whether the product is
ready to ship or not. If the number of severe (1) bugs is zero, the product can ship. If there are any severe
bugs, then bug fixing must continue.

Other useful information

Who's the bug Assigned to; who's going to be responsible for the bug and do the work on the
bug?

What Platform was the bug found on — Windows, Linux, etc. Is the bug specific to one platform or
does it occur on all platforms?

What Product was the bug found in? If your company is doing multiple products this is a good
way to track those products.

What Company would be concerned about this bug? If your company is working with multiple
companies either as an OEM or as customer this is a good way to track that information.

Whatever else you want or need to keep track of. Some of these fields will also have value to
marketing and sales. It's a useful way to track information about companies and clients.

An example of a bug report:

so if the bug has to go back to him, it will make back onto his list. This procedure ensures that bugs don't
fall between the cracks.
The following is a list of status’ that a developer can assign to a bug.

Fixed

The Fixed status indicates that a change was made to the code and will be available in the next
build. Testers search the database on a daily basis looking for all Fixed status bugs. Then the bug
reporter or tester assigned to the feature retests the bug duplicating the original circumstances. If the bug
is fixed and it is now working properly, another test with slightly different circumstances is performed to
confirm the fix. If the bug passes both tests, it gets a Tested status.

If the bug doesn’t pass the test, the bug is given a Verified status and sent back to the developer.
Notice here that since the bug’s Assigned To field has retained the developer's name, it's an easy
process for the tester to send the bug back by simply changing the status to Submitted.

Duplicate

The Duplicate status bug is the same as a previously reported bug. Sometimes only the
developer or person looking at the code can tell that the bug is a duplicate. It's not always obvious from
the surface. A note indicating the previous bug number is placed on the duplicate bug. A note is also
placed on the original bug indicating that a duplicate bug exists. When the original bug is fixed and tested,
the duplicate bug will be tested also. If the bug really is a duplicate of previous bug then the when the
previous bug is fixed, the duplicate bug will also be fixed. If this the case then both bugs get a Tested
status.

If the duplicate is still a bug, while the original bug is working properly, the ﬂ is no
longer has a duplicate status. It gets a Submitted status and is sent ba th his is a “fail-
safe” built into the bug life cycle. It's a check and balance that pr %na bugs from being swept
under the carpet or falling between the cracks.

A note of warning. Writing lots of duphcatﬂ a teste tatlon for being an

“airhead”. It pays to set time aside dallbma new bug iZ evious day.

Resolved
Resol e proble n care of but no code has been changed. For
e

examp?ﬁ e resol vice drlvers or third party software. Resolved bugs are
tested t e sure that the ly has been resolved with the new situation. If the problem no

longer occurs, the bug gets a ested status. If the Resolved bug still occurs, it is sent back to the
developer with a Submitted status.

Need More Information

Need More Information or “NMI” indicates that the bug verifier or developer does not have
enough information to duplicate or fix the bug; for example, the steps to duplicate the bug may be unclear
or incomplete. The developer changes the status to ‘Need More Information’ and includes a question or
comments to the reporter of the bug. This status is a flag to the bug reporter to supply the necessary
information or a demonstration of the problem. After updating the bug information (in the Notes field), the
status is put back to Verified so the developer can continue working on the bug. If the bug reporter can
not duplicate the bug, it is given a Can’t Duplicate status along with a note indicating the circumstances.

The only person who can put “Can’t Duplicate” on a bug is the person who reported it (or the
person testing it). The developer can NOT use this status, he must put Need More Information on it to
give the bug reporter a chance to work on the bug.

This is another example of a “fail-safe” built into the database. It is vital at this stage that the bug
be given a second chance. The developer should never give a bug a ‘Can’t Duplicate’ status. The bug
reporter needs an opportunity to clarify or add information to the bug or to retire it.

Working as Designed

The developer has examined the bug, the product requirements and the design documents and
determined that the bug is not a bug, it is Working as Designed. What the product or code is doing is
intentional as per the design. Or as someone more aptly pointed out it’s “working as coded”! It's doing
exactly what the code said to do.

8) The tester retests the bug and the same problem persists, so the tester after confirmation from test leader
reopens the bug and marks it with ‘Reopen’ status. And the bug is passed back to the development team for
fixing.

<V >Cycle V:

1) A tester finds a bug and reports it to Test Lead.

2) The Test lead verifies if the bug is valid or not.

3) The bug is verified and reported to development team with status as ‘New’.

4) The developer tries to verify if the bug is valid but fails in replicate the same scenario as was at the time of
testing, but fails in that and asks for help from testing team.

5) The tester also fails to re-generate the scenario in which the bug was found. And developer rejects the
bug marking it ‘Rejected’.

< VI > Cycle VI:
1) After confirmation that the data is unavailable or certain functionality is unavailable, the solution and retest
of the bug is postponed for indefinite time and it is marked as ‘Postponed’.

< VIl > Cycle VII:
1) If the bug does not stand importance and can be/needed to be postponed, then it is given a status as
‘Deferred’.

This way, any bug that is found ends up with a status of Closed, Rejected, Deferred or Postponed.
The main purpose behind any Software Development process is to prow cI| nt I"End User of the
software product) with a complete solution (software pro uctﬁgﬁo help him in managing his

business/work in cost effective and efficient way. A softwar ped is considered successful if it
satisfies all the requirements stated by the end us

Any software development p 00&(Iete if th s@l&x ZSe of Testing of the developed
product is excluded. \fé ng is a gle in order to find out and fix previously
uct.

undetected guvx nWhe software p improving the quality of the software product and
ent to us

What is a bug/error? E

A bug or error in software product is any exception that can hinder the functionality of either the whole
software or part of it.

How do | find out a BUG/ERROR?

Basically, test cases/scripts are run in order to find out any unexpected behavior of the software product
under test. If any such unexpected behavior or exception occurs, it is called as a bug.

What is a Test Case?

A test case is a noted/documented set of steps/activities that are carried out or executed on the software in
order to confirm its functionality/behavior to certain set of inputs.

What do | do if | find a bug/error?

In normal terms, if a bug or error is detected in a system, it needs to be communicated to the developer in
order to get it fixed.

Right from the first time any bug is detected till the point when the bug is fixed and closed, it is assigned
various statuses which are New, Open, Postpone, Pending Retest, Retest, Pending Reject, Reject,
Deferred, and Closed.

Jagan Mohan Julooru

chapter).

Software Production Process Models

There are two kinds of software production process models: non-operational and operational.
Both are software process models. The difference between the two primarily stems from the fact
that the operational models can be viewed as computational scripts or programs: programs that
implement a particular regimen of software engineering and development. Non-operational
models on the other hand denote conceptual approaches that have not yet been sufficiently
articulated in a form suitable for codification or automated processing.

Non-Operational Process Models

There are two classes of non-operational software process models of the great interest. These are
the spiral model and the continuous transformation models. There is also a wide selection of
other non-operational models, which for brevity we label as miscellaneous mode]s his

examined in turn. GO

The Spiral Model. The spiral model of software devgl olu‘uon represents a risk-
driven approach to software process analys1s &mBoeh 1987, Boehm et al, 1998).
This approach, developed by Barry orates ec1ﬁcation driven,
prototype-driven process m é her Wlth %eso re l1fe cycle. It does so by
representing iteratj eg m nt cycles S sp1ral with inner cycles denoting
early egﬂ \JX d proto er cycles denotmg the classic software life cycle.
The ra? imension deno ve development costs, and the angular dimension denotes
progress made in accomplishing each development spiral. See Figure 3.

Risk analysis, which seeks to identify situations that might cause a development effort to fail or
go over budget/schedule, occurs during each spiral cycle. In each cycle, it represents roughly the
same amount of angular displacement, while the displaced sweep volume denotes increasing
levels of effort required for risk analysis. System development in this model therefore spirals out
only so far as needed according to the risk that must be managed. Alternatively, the spiral model
indicates that the classic software life cycle model need only be followed when risks are greatest,
and after early system prototyping as a way of reducing these risks, albeit at increased cost. The
insights that the Spiral Model offered has in turned influenced the standard software life cycle
process models, such as ISO12207 noted earlier. Finally, efforts are now in progress to integrate
computer-based support for stakeholder negotiations and capture of trade-off rationales into an
operational form of the WinWin Spiral Model (Boehm et al, 1998). (see Risk Management in
Software Development)

Miscellaneous Process Models. Many variations of the non-operational life cycle and process
models have been proposed, and appear in the proceedings of the international software process
workshops sponsored by the ACM, IEEE, and Software Process Association. These include fully

14

executable models. Three classes of operational software process models can be identified and
examined. Following this, we can also identify a number of emerging trends that exploit and
extend the use of operational process models for software engineering.

Operational specifications for rapid prototyping. The operational approach to software
development assumes the existence of a formal specification language and processing
environment that supports the evolutionary development of specifications into an prototype
implementation (Bauer 1976, Balzer 1983, Zave 1984). Specifications in the language are coded,
and when computationally evaluated, constitute a functional prototype of the specified system.
When such specifications can be developed and processed incrementally, the resulting system
prototypes can be refined and evolved into functionally more complete systems. However, the
emerging software systems are always operational in some form during their development.
Variations within this approach represent either efforts where the prototype is the end sought, or
where specified prototypes are kept operational but refined into a complete system.

The specification language determines the power underlying operational specification
technology. Simply stated, if the specification language is a conventional programming
language, then nothing new in the way of software development is realized. However, if the
specification incorporates (or extends to) syntactic and semantic language construcfdthat are
specific to the application domain, which usually are not part of conventi @ ing
languages, then domain-specific rapid prototyping can be suppon\e 6

An interesting twist worthy of note is that it 1mw&%e cxfbllities of many

operational specification languages to % e is to serve as a model of
an arbitrary abstract process 0 t are prQce déﬁ 1S way, using a prototyping
language and envi r@r\') ght be 9 n abstract model of some software
engineg a system ﬂ% and consumes certain types of documents, as
well ajtfie ﬁes of deve?@ ormations applied to them. Thus, in this regard, it may
be possible to construct opdrational software process models that can be executed or simulated
using software prototyping technology. Humphrey and Kellner describe one such application and

give an example using the graphic-based state-machine notation provided in the
STATECHARTS environment (Humphrey 1989).

Software automation. Automated software engineering (also called knowledge-based software
engineering) attempts to take process automation to its limits by assuming that process
specifications can be used directly to develop software systems, and to configure development
environments to support the production tasks at hand. The common approach is to seek to
automate some form of the continuous transformation model (Bauer 1976, Balzer 1985). In turn,
this implies an automated environment capable of recording the formalized development of
operational specifications, successively transforming and refining these specifications into an
implemented system, assimilating maintenance requests by incorporating the new/enhanced
specifications into the current development derivation, then replaying the revised development
toward implementation (Balzer 1983b, Balzer 1985). However, current progress has been limited
to demonstrating such mechanisms and specifications on software coding, maintenance, project
communication and management tasks (Balzer 1983b, Balzer 1985, Sathi 1985, Mi 1990,
Scacchi and Mi 1997), as well as to software component catalogs and formal models of software

16

Boehm, B., A Spiral Model of Software Development and Enhancement, Computer, 20(9), 61-
72, 1987.

Boehm, B., A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy, Using the WinWin Spiral
Model: A Case Study, Computer, 31(7), 33-44, 1998.

Bolcer, G.A., R.N. Taylor, Advanced workflow management technologies, Software Process--
Improvement and Practice, 4,3, 125-171, 1998.

Budde, R., K. Kuhlenkamp, L. Mathiassen, and H. Zullighoven, Approaches to Prototyping,
Springer-Verlag, New York, 1984.

Chatters, B.W., M.M. Lehman, J.F. Ramil, and P. Werwick, Modeling a Software Evolution
Process: A Long-Term Case Study, Software Process-Improvement and Practice, 5(2-3), 91-102,
2000.

Cook, J.E., and A.Wolf, Discovering models of software processes from event-based data, ACM
Trans. Softw. Eng. Methodol. 7, 3 (Jul. 1998), 215 - 249

B. Curtis, H. Krasner, V. Shen, and N. Iscoe, On Building Software Process Models\Under the
Lamppost, Proc. 9th. Intern. Conf. Software Engineering, IEEE Computer @w terey,
CA, 96-103, 1987.

Curtis, B., H. Krasner, and N. Iscoe, AFleld t are Des1gn Process for Large
Systems, Communzcattons ACM, 31, 1 ovemb

69, 1999.

Cusumano, M. and D. W &){t\@e De{))]gﬁlt @&temet Time, Computer, 32(10), 60-
Distas® J .,(Software Mane@na‘- Survey of Practice in 1980, Proceedings IEEE, 68,9,1103-
1119, 1980.

DiBona, C., S. Ockman and M. Stone, Open Sources: Voices from the Open Source Revolution,
O'Reilly Press, Sebastopol, CA, 1999.

Fogel, K., Open Source Development with CVS, Coriolis Press, Scottsdale, AZ, 1999.

Garg, P.K. and M. Jazayeri (eds.), Process-Centered Software Engineering Environment, IEEE
Computer Society, pp. 131-140, 1996.

Garg, P.K., P. Mi, T. Pham, W. Scacchi, and G. Thunquest, The SMART approach for software
process engineering, Proc. 16th. Intern. Conf. Software Engineering, 341 - 350,1994.

Garg, P.K. and W. Scacchi, ISHYS: Design of an Intelligent Software Hypertext Environment,
IEEE Expert, 4, 3, 52-63, 1989.

Garg, P.K. and W. Scacchi, A Hypertext System to Manage Software Life Cycle Documents,
IEEE Software, 7, 2, 90-99, 1990.

20

Goguen, J., Reusing and Interconnecting Software Components, Computer, 19,2, 16-28, 1986.

Graham, D.R., Incremental Development: Review of Non-monolithic Life-Cycle Development
Models, Information and Software Technology, 31, 1, 7-20, January,1989.

Grundy, J.C.; Apperley, M.D.; Hosking, J.G.; Mugridge, W.B. A decentralized architecture for
software process modeling and enactment, /EEE Internet Computing , Volume: 2 Issue: 5 , Sept.-
Oct. 1998, 53 -62.

Grinter, R., Supporting Articulation Work Using Software Configuration Management, J.
Computer Supported Cooperative Work,5, 447-465, 1996.

Heineman, G., J.E. Botsford, G. Caldiera, G.E. Kaiser, M.I. Kellner, and N.H. Madhaviji.,
Emerging Technologies that Support a Software Process Life Cycle. IBM Systems J.,
32(3):501-529, 1994.

Hekmatpour, S., Experience with Evolutionary Prototyping in a Large Software Project, ACM
Software Engineering Notes, 12,1, 38-41 1987

Hoftnagel, G. F., and W. Beregi, Automating the Software Development Process, ,[%Systems
J.,24 2 1985 102 120

Horowitz, E. and R. Williamson, SODOS: A Software Docgna\t% Support Env1ronment--Its

Definition, /EEE Trans. Software Engzneerm“
Horowitz, E., A. Kemper, and m Surve iA@%sﬂ Generators, /IEEE
Software, 2, 1 ,40-54, 19

R?a?me Digital Systems with Emphasis on

Hosw?(\ls and
Prograljnmihg, /RE Trans. Management EM-8, June, 1961.

Humphrey, W. S., The IBM Large-Systems Software Development Process: Objectives and
Direction, ,/BM Systems J., 24,2, 76-78, 1985.

Humphrey, W.S. and M. Kellner, Software Process Modeling: Principles of Entity Process
Models, Proc. 11th. Intern. Conf- Software Engineering, IEEE Computer Society, Pittsburgh,
PA, 331-342, 1989.

Kaiser, G., P. Feiler, and S. Popovich, Intelligent Assistance for Software Development and
Maintenance, IEEE Software, 5, 3, 1988.

Kling, R., and W. Scacchi, The Web of Computing: Computer Technology as Social
Organization, Advances in Computers, 21, 1-90, Academic Press, New York, 1982.

Lehman, M. M., Process Models, Process Programming, Programming Support, Proc. 9th.
Intern. Conf. Software Engineering, 14-16, IEEE Computer Society, 1987.

Lehman, M. M., and L. Belady, Program Evolution: Processes of Software Change, Academic
Press, New York, 1985

21

Jesges

information/documentation is available and up-to-date - preferably electronic, not
paper; promote teamwork and cooperation; use protoypes and/or continuous
communication with end-users if possible to clarify expectations.

What is software 'quality'?

Quality software is reasonably bug-free, delivered on time and within budget, meets
requirements and/or expectations, and is maintainable. However, quality is obviously a
subjective term. It will depend on who the 'customer' is and their overall influence in the
scheme of things. A wide-angle view of the 'customers' of a software development
project might include end-users, customer acceptance testers, customer contract officers,
customer management, the development organization's
management/accountants/testers/salespeople, future software maintenance engineers,
stockholders, magazine columnists, etc. Each type of 'customer' will have their own slant
on 'quality’ - the accounting department might define quality in terms of profits, while an
end-user might define quality as user-friendly and bug-free. SK

What is 'good code'? Sa\ C
'Good code' is code that works, is Q’S’ 1S read bz11 d maintainable. Some
organizations have codm at all de rs @ osed to adhere to, but

everyone has d a out w at 1s too many or too few rules.
There a eorie such as McCabe Complexity metrics. It
?ﬂ 1n min g% e use of standards and rules can stifle productivity
reat1v1ty 'Peer r uddy checks' code analysis tools, etc. can be used to

check for problems and enforce standards.

For C and C++ coding, here are some typical ideas to consider in setting rules/standards;
these may or may not apply to a particular situation:

e minimize or eliminate use of global variables.

e use descriptive function and method names - use both upper and lower case, avoid
abbreviations, use as many characters as necessary to be adequately descriptive
(use of more than 20 characters is not out of line); be consistent in naming
conventions.

e use descriptive variable names - use both upper and lower case, avoid
abbreviations, use as many characters as necessary to be adequately descriptive
(use of more than 20 characters is not out of line); be consistent in naming
conventions.

o function and method sizes should be minimized; less than 100 lines of code is
good, less than 50 lines is preferable.

o function descriptions should be clearly spelled out in comments preceding a
function's code.

Jesges

Critical. (Note that documentation can be electronic, not necessarily paper, may be
embedded in code comments, etc.) QA practices should be documented such that they are
repeatable. Specifications, designs, business rules, inspection reports, configurations,
code changes, test plans, test cases, bug reports, user manuals, etc. should all be
documented in some form. There should ideally be a system for easily finding and
obtaining information and determining what documentation will have a particular piece
of information. Change management for documentation should be used if possible.

What's the big deal about 'requirements'?

One of the most reliable methods of ensuring problems, or failure, in a large, complex
software project is to have poorly documented requirements specifications. Requirements
are the details describing an application's externally-perceived functionality and
properties. Requirements should be clear, complete, reasonably detailed, cohesive,
attainable, and testable. A non-testable requirement would be, for example, 'user-friendly’
(too subjective). A testable requirement would be something like 'the user must enter
their previously-assigned password to access the application'. Determiging and
organizing requirements details in a useful and efficient way can be a di effort;
different methods are available depending on the particul OJﬁ %ooks are
available that describe various approaches to this task. ‘é

Care should be taken to involve NO}bJects ifiYant 'customers' in the

requirements process. 'Cu @ be in-hou & out, and could include
end-users, ce t Sél contract officers, customer
eers, salespeople, etc. Anyone who could

custo
manage é ware mai
lat h project @a@gtlons aren't met should be included if possible.

Orgamzatlons vary considerably in their handling of requirements specifications. Ideally,
the requirements are spelled out in a document with statements such as '"The product
shall.....". 'Design' specifications should not be confused with 'requirements'; design
specifications should be traceable back to the requirements.

In some organizations requirements may end up in high level project plans, functional
specification documents, in design documents, or in other documents at various levels of
detail. No matter what they are called, some type of documentation with detailed
requirements will be needed by testers in order to properly plan and execute tests.
Without such documentation, there will be no clear-cut way to determine if a software
application is performing correctly.

'Agile' methods such as XP use methods requiring close interaction and cooperation
between programmers and customers/end-users to iteratively develop requirements. In
the XP 'test first' approach developmers create automated unit testing code before the
application code, and these automated unit tests essentially embody the requirements.

What steps are needed to develop and run software tests?

Jesges

The following are some of the steps to consider:

e Obtain requirements, functional design, and internal design specifications and
other necessary documents

e Obtain budget and schedule requirements

e Determine project-related personnel and their responsibilities, reporting
requirements, required standards and processes (such as release processes, change
processes, etc.)

e Determine project context, relative to the existing quality culture of the
organization and business, and how it might impact testing scope, aproaches, and
methods.

o Identify application's higher-risk aspects, set priorities, and determine scope and
limitations of tests

e Determine test approaches and methods - unit, integration, functional, system,
load, usability tests, etc.

e Determine test environment requirements (hardware, software, communications,
etc.)

e Determine testware requirements (record/playback tools, coverage a‘a% test
tracking, problem/bug tracking, etc.) 6

e Determine test input data requirements \

o Identify tasks, those responsible fo f a‘qulrements

e Set schedule estlmates timeli
e Determine mpute gf{lssses bound 2@ es, error classes

. Prepare.te tand ha ews/approvals

[]
? tX’::eded r ﬁ% ons/approvals of test cases

Prepare test BIRO and testware, obtain needed user manuals/reference
documents/configuration guides/installation guides, set up test tracking processes,
set up logging and archiving processes, set up or obtain test input data

e Obtain and install software releases

e Perform tests

o Evaluate and report results

e Track problems/bugs and fixes

e Retest as needed

e Maintain and update test plans, test cases, test environment, and testware through
life cycle

What's a "test plan'?

A software project test plan is a document that describes the objectives, scope, approach,
and focus of a software testing effort. The process of preparing a test plan is a useful way
to think through the efforts needed to validate the acceptability of a software product. The
completed document will help people outside the test group understand the 'why' and
'how' of product validation. It should be thorough enough to be useful but not so thorough
that no one outside the test group will read it. The following are some of the items that
might be included in a test plan, depending on the particular project:

Jesges

Y

Title

Identification of software including version/release numbers

Revision history of document including authors, dates, approvals

Table of Contents

Purpose of document, intended audience

Objective of testing effort

Software product overview

Relevant related document list, such as requirements, design documents, other test
plans, etc.

Relevant standards or legal requirements

Traceability requirements

Relevant naming conventions and identifier conventions

Overall software project organization and personnel/contact-info/responsibilties
Test organization and personnel/contact-info/responsibilities

Assumptions and dependencies

Project risk analysis

Testing priorities and focus

Scope and limitations of testing

Test outline - a decomposition of the test appr ch bc@ t%é feature,

functionality, process, system, module, etc. as a

Outline of data input equivalence cl Xﬁ%&lue analysis, error classes

Test environment - hardware oﬁ stems {kequlred software, data

configurations, int WI\ tems

Test enyi m analysi 9‘&‘ fe between the test and production
1

S}é 1mpact
vironm 0 l@ onﬁguratlon issues

Software migratfo ses

Software CM processes

Test data setup requirements

Database setup requirements

Outline of system-logging/error-logging/other capabilities, and tools such as
screen capture software, that will be used to help describe and report bugs
Discussion of any specialized software or hardware tools that will be used by
testers to help track the cause or source of bugs

Test automation - justification and overview

Test tools to be used, including versions, patches, etc.

Test script/test code maintenance processes and version control

Problem tracking and resolution - tools and processes

Project test metrics to be used

Reporting requirements and testing deliverables

Software entrance and exit criteria

Initial sanity testing period and criteria

Test suspension and restart criteria

Personnel allocation

Personnel pre-training needs

Test site/location

Jesges

e Outside test organizations to be utilized and their purpose, responsibilties,
deliverables, contact persons, and coordination issues

o Relevant proprietary, classified, security, and licensing issues.

e Open issues

e Appendix - glossary, acronyms, etc.

What's a 'test case'?

e A test case is a document that describes an input, action, or event and an expected
response, to determine if a feature of an application is working correctly. A test
case should contain particulars such as test case identifier, test case name,
objective, test conditions/setup, input data requirements, steps, and expected
results.

o Note that the process of developing test cases can help find problems in the
requirements or design of an application, since it requires completely thinking
through the operation of the application. For this reason, it's useful to prepare test
cases early in the development cycle if possible.

What should be done after a bug is found? CO u

The bug needs to be communicated and as &@ers that can fix it. After the
problem is resolved, fixes shou %l and iﬁ‘tlons made regarding
problems elsewhere. If

requirements for regresswﬁv ec that ﬁ
a problem-tracki ace, lrxe late these processes. A variety of
ommercégxf) -Yracking/m are tools are available :

Complete 1nf0r93ti@‘s that developers can understand the bug, get an idea of
it's severity, and reproduce it if necessary.

o Bug identifier (number, ID, etc.)

o Current bug status (e.g., 'Released for Retest', New', etc.)

o The application name or identifier and version

o The function, module, feature, object, screen, etc. where the bug occurred

o Environment specifics, system, platform, relevant hardware specifics

e Test case name/number/identifier

e One-line bug description

o Full bug description

e Description of steps needed to reproduce the bug if not covered by a test case or if
the developer doesn't have easy access to the test case/test script/test tool

o Names and/or descriptions of file/data/messages/etc. used in test

o File excerpts/error messages/log file excerpts/screen shots/test tool logs that
would be helpful in finding the cause of the problem

o Severity estimate (a 5-level range such as 1-5 or 'critical'-to-'low' is common)

e Was the bug reproducible?

o Tester name

o Test date

the application as efficiently as possible while meeting the test organizations testing
mandate.

Test Automation Engineer

The Role of the Test Automation Engineer to is to create automated test case scripts that
perform the tests as designed by the Test Designer. To fulfill this role the Test
Automation Engineer must develop and maintain an effective test automation
infrastructure using the tools and techniques available to the testing organization. The
Test Automation Engineer must work in concert with the Test Designer to ensure the
appropriate automation solution is being deployed.

Test Methodologist or Methodology Specialist

The Role of the Test Methodologist is to provide the test organization with resources on
testing methodologies. To fulfill this role the Methodologist works with Quality
Assurance to facilitate continuous quality improvement within the testing methodology
and the testing organization as a whole. To this end the methodologist: gval %e test
strategy, provides testing frameworks and template dCeéJ effective
implementation of the appropriate testing techniques. Sa

Testing Technmé\l\l "(O 26 O“
O\P X %e IT 1nduslg@tgtestmg discipline have developed several techniques for

analyzing and testing applications
Black-box Tests

Black-box tests are derived from an understanding of the purpose of the code; knowledge
on or about the actual internal program structure is not required when using this
approach. The risk involved with this type of approach is that .hidden. (functions
unknown to the tester) will not be tested and may not been even exercised.

White-box Tests or Glass-box tests
White-box tests are derived from an intimate understanding of the purpose of the code
and the code itself; this allows the tester to test .hidden. (undocumented functionality)

within the body of the code. The challenge with any white-box testing is to find testers
that are comfortable with reading and understanding code.

Jagan Mohan Julooru

by facilitating the determination of current process capabilities and identification of the
issues most critical to software quality and process improvement. [SEI/CMU-93-TR-25]

Capture-replay tools. - Tools that gives testers the ability to move some GUI testing away
from manual execution by ‘capturing’ mouse clicks and keyboard strokes into scripts, and
then ‘replaying’ that script to re-create the same sequence of inputs and responses on
subsequent test.[Scott Loveland, 2005]

Cause Effect Graphing. (1) [NBS] Test data selection technique. The input and output
domains are partitioned into classes and analysis is performed to determine which input
classes cause which effect. A minimal set of inputs is chosen which will cover the entire
effect set. (2)A systematic method of generating test cases representing combinations of
conditions. See: testing, functional.[G. Myers]

Clean test. A test whose primary purpose is validation; that is, tests designed to
demonstrate the software's correct working.(syn. positive test)[B. Beizer 1995]

Clear-box testing. See White-box testing. \4
Code audit. An independent review of source code by ,él;i ol to verify
compliance with software design documentation and & gs andards Correctness

and efficiency may also be evaluated. (IE E O"

%2;}'] technique where the

Code Inspection. A m a] tes

programmer rea e, state ’é_ nt, to a group who ask questions

analyz ﬁ&’) gic, a e with respect to a checklist of historically
£1 ogrammin @g analyzmg its compliance with coding standards.

Co trast with code au t code review, code walkthrough. This technique can also be

applied to other software and configuration items. [G.Myers/NBS] Syn: Fagan Inspection

Code Walkthrough. A manual testing [error detection] technique where program [source
code] logic [structure] is traced manually [mentally] by a group with a small set of test
cases, while the state of program variables is manually monitored, to analyze the
programmer's logic and assumptions.[G.Myers/NBS]

Coexistence Testing. Coexistence isn't enough. It also depends on load order, how virtual
space is mapped at the moment, hardware and software configurations, and the history of
what took place hours or days before. It’s probably an exponentially hard problem rather
than a square-law problem. [from Quality Is Not The Goal. By Boris Beizer, Ph. D.]

Comparison testing. Comparing software strengths and weaknesses to competing products
Compatibility bug A revision to the framework breaks a previously working feature: a

new feature is inconsistent with an old feature, or a new feature breaks an unchanged
application rebuilt with the new framework code. [R. V. Binder, 1999]

function used in the previous example. The square root function has two input partitions and two
output partitions, as shown in table 3.2.

Input Partitions Output Partitions
i <) a ==()
ii ==() b Error

Table 3.2 - Partitions for Square Root
These four partitions can be tested with two test cases:

Test Case 1: Input 4, Return 2
- Exercises the >=0 input partition (ii)
- Exercises the >=0 output partition (a)

Test Case 2: Input -10, Return 0, Output "Square root error - illegal negative input" using
Print_Line.

- Exercises the <0 input partition (i)

- Exercises the "error" output partition (b) \4

For a function like square root, we can see that equivalence partiticVeis @Qrﬁple.
.

One test case for a positive number and a req| ‘b@&ae'cond test case for a negative

number and an error result. However, a so&@e mes I %Iex, the identification of

partitions and the inter-depei@dm en partitions tﬁo Z‘u more difficult, making it
t to es

less convenient to us [quivalence partitioning is still

desigre te :
basically a pﬂ%@ﬂe sign techniﬂ%ﬁe to be supplemented by negative tests.
Bo@i&ﬁalue Analy@ age

Boundary value analysis uses the same analysis of partitions as equivalence partitioning.
However, boundary value analysis assumes that errors are most likely to exist at the boundaries
between partitions. Boundary value analysis consequently incorporates a degree of negative
testing into the test design, by anticipating that errors will occur at or near the partition
boundaries. Test cases are designed to exercise the software on and at either side of boundary
values. Consider the two input partitions in the square root example, as illustrated by figure 3.2.

Input
Partitions (1) (11)
- 0 +

! 11 f

1 234

Boundaries and test cases

Ln

Figure 3.2 - Input Partition Boundaries in Square Root

Jagan Mohan Julooru

The zero or greater partition has a boundary at 0 and a boundary at the most positive real
number. The less than zero partition shares the boundary at 0 and has another boundary at the
most negative real number. The output has a boundary at 0, below which it cannot go.

Test Case 1: Input {the most negative real number}, Return 0, Output "Square root error - illegal
negative input" using Print_Line - Exercises the lower boundary of partition (i).

Test Case 2: Input {just less than 0}, Return 0, Output "Square root error — illegal negative input"
using Print_Line - Exercises the upper boundary of partition (i).

Test Case 3: Input 0, Return 0
- Exercises just outside the upper boundary of partition (i), the lower boundary of partition (ii) and
the lower boundary of partition (a).

Test Case 4: Input {just greater than 0}, Return {the positive square root of the input}
- Exercises just inside the lower boundary of partition (ii).

Test Case 5: Input {the most positive real number}, Return {the positive square root of the input}
- Exercises the upper boundary of partition (ii) and the upper boundary of partition (a).

As for equivalence partitioning, it can become impractical to use boundary val IyS|s
thoroughly for more complex software. Boundary value analysis can also be r non
scalar data, such as enumeration values. In the example partiio rot really have
boundaries. For purists, boundary value analysis requ d the underlying
representation of the numbers. A more pragmatic a any small values above and
below each boundary and suitably big posmv numb

3.4. Stateéwf\%“mg AB’(

Sta? trSnsmon testing |¥ useful where either the software has been designed as a
state machine or the software implements a requirement that has been modeled as a state

machine. Test cases are designed to test the transitions between states by creating the events
which lead to transitions.

When used with illegal combinations of states and events, test cases for negative testing can be
designed using this approach. Testing state machines is addressed in detail by the IPL paper
"Testing State Machines with AdaTEST and Cantata".

3.5. Branch Testing

In branch testing, test cases are designed to exercise control flow branches or decision points in
a unit. This is usually aimed at achieving a target level of Decision Coverage. Given a functional
specification for a unit, a "black box" form of branch testing is to "guess" where branches may be
coded and to design test cases to follow the branches. However, branch testing is really a "white
box" or structural test case design technique. Given a structural specification for a unit, specifying
the control flow within the unit, test cases can be designed to exercise branches. Such a
structural unit specification will typically include a flowchart or PDL.

Returning to the square root example, a test designer could assume that there would be a branch
between the processing of valid and invalid inputs, leading to the following test cases:

Test Case 1: Input 4, Return 2
- Exercises the valid input processing branch

Jagan Mohan Julooru

functionality of a unit that is important, and that branch testing is a means to an end, not an end in
itself. Another consideration is that branch testing is based solely on the outcome of decisions. It
makes no allowances for the complexity of the logic which leads to a decision.

3.6. Condition Testing

There are a range of test case design techniques which fall under the general title of condition
testing, all of which endeavor to mitigate the weaknesses of branch testing when complex logical
conditions are encountered. The object of condition testing is to design test cases to show that
the individual components of logical conditions and combinations of the individual components
are correct.

Test cases are designed to test the individual elements of logical expressions, both within branch
conditions and within other expressions in a unit. As for branch testing, condition testing could be
used as a "black box" technique, where the test designer makes intelligent guesses about the
implementation of a functional specification for a unit. However, condition testing is more suited to
"white box" test design from a structural specification for a unit.

The test cases should be targeted at achieving a condition coverage metric, such as Modified
Condition Decision Coverage (available as Boolean Operand Effectiveness in AdaTEST). The
IPL paper entitled "Structural Coverage Metrics" provides more detail of condition coverage
metrics.

To illustrate condition testing, consider the example specificatio th @ \)t function
which uses successive approximation (figure 3.3(d) - Specifi \é se that the designer
for the unit made a decision to limit the algorithm to glat 10 iterations, on the grounds
that after 10 iterations the answer would be c@ ould et. The PDL specification
for the unit could specify an eé|t condi given in & l

‘?‘e'; pa9

EXIT_LOCP WHEN (error<desired accuracy) or (iterations=10)

Figure 3.4 - Loop Exit Condition

If the coverage objective is Modified Condition Decision Coverage, test cases have to prove that
both error<desired accuracy and iterations=10 can independently affect the outcome of the
decision.

Test Case 1: 10 iterations, error>desired accuracy for all iterations.

- Both parts of the condition are false for the first 9 iterations. On the tenth iteration, the first part
of the condition is false and the second part becomes true, showing that the iterations=10 part of
the condition can independently affect its outcome.

Test Case 2: 2 iterations, error>=desired accuracy for the first iteration, and error<desired
accuracy for the second iteration. - Both parts of the condition are false for the first iteration. On

Jagan Mohan Julooru

the second iteration, the first part of the condition becomes true and the second part remains
false, showing that the error<desired accuracy part of the condition can independently affect its
outcome. Condition testing works best when a structural specification for the unit is available. It
provides a thorough test of complex conditions, an area of frequent programming and design
error and an area which is not addressed by branch testing. As for branch testing, it is important
for test designers to beware that concentrating on conditions could distract a test designer from
the overall functionality of a unit.

3.7. Data Definition-Use Testing

Data definition-use testing designs test cases to test pairs of data definitions and uses. A data
definition is anywhere that the value of a data item is set, and a data use is anywhere that a data
item is read or used. The objective is to create test cases which will drive execution through paths
between specific definitions and uses.

Like decision testing and condition testing, data definition-use testing can be used in combination
with a functional specification for a unit, but is better suited to use with a structural specification
for a unit.

Consider one of the earlier PDL specifications for the square root function which sent every input
to the maths co-processor and used the co-processor status to determine the validity of the
result. (Figure 3.3(c) - Specification 3). The first step is to list the pairs of definitions r%es. In
this specification there are a number of definition-use pairs, as shown in table 6 0

)

ale©
J -
Definiti -
efinition ‘. - ke}\)‘
. _quh@ ubin a AV%JE Ql 0-Processor
. \) v ke
. i‘ PW Cg—procesir 515}\36)_ J Test for status=error
) L Wil
P (\!) ﬁlaﬁage By Print_Line
\ > gk~

4 RETURN 0 By the calling unit
5 Answer by co-processor RETURN the answer
6 RETURN the answer By the calling unit

Table 3.3 - Definition-Use pairs

These pairs of definitions and uses can then be used to design test cases. Two test cases are
required to test all six of these definition-use pairs:

Test Case 1: Input 4, Return 2
- Tests definition-use pairs 1, 2, 5, 6

Test Case 2: Input -10, Return 0, Output "Square root error - illegal negative input”
using Print_Line. - Tests definition-use pairs 1, 2, 3, 4

The analysis needed to develop test cases using this design technique can also be useful for
identifying problems before the tests are even executed; for example, identification of situations
where data is used without having been defined. This is the sort of data flow analysis that some
static analysis tool can help with. The analysis of data definition-use pairs can become very
complex, even for relatively simple units. Consider what the definition-use pairs would be for the
successive approximation version of square root!

Jagan Mohan Julooru

ORGANIZATIONAL APPROACHES FOR UNIT TESTING

Introduction

Unit testing is the testing of individual components (units) of the software. Unit testing is usually
conducted as part of a combined code and unit test phase of the software lifecycle, although it is
not uncommon for coding and unit testing to be conducted as two distinct phases.

The basic units of design and code in Ada, C and C++ programs are individual subprograms
(procedures, functions, member functions). Ada and C++ provide capabilities for grouping basic
units together into packages (Ada) and classes (C++). Unit testing for Ada and C++ usually tests
units in the context of the containing package or class.

When developing a strategy for unit testing, there are three basic organizational approaches that
can be taken. These are top down, bottom up and isolation.

The concepts of test drivers and stubs are used throughout this paper. A test driver is software
which executes software in order to test it, providing a framework for setting input parameters,
executing the unit, and reading the output parameters. A stub is an imitation of a unit, used in
place of the real unit to facilitate testing.

An AdaTEST or Cantata test script comprises a test driver and an (optional) collection of stubs.

2. Top Down Testing O u\k
)

2.1. Description

In top down unit testing, individual units are tes e om the units which call them,
but in isolation from the units called. The unlt hierar: ested first, with all called
ﬁ actual called units, with

west level units have been

tested. Top dowm t quie test stub

5@ a}es the ﬁ@@t%ted units needed to test unit D, assuming that units A,
B akd C'have already be a top down approach.

A unit test plan for the program shown in figure 2.1, using a strategy based on the top down
organisational approach, could read as follows:

units replaced by stubs. Testlng co cmg th
lower level units being st r cess is ﬁ
w\a ivers.

Step (1)

Test unit A, using stubs for units B, C and D.

Step (2)

Test unit B, by calling it from tested unit A, using stubs for units C and D.

Step (3)

Test unit C, by calling it from tested unit A, using tested units B and a stub for unit D.

Step (4)

Test unit D, by calling it from tested unit A, using tested unit B and C, and stubs for units

E, F and G. (Shown in figure 2.1).

Step (5)

Test unit E, by calling it from tested unit D, which is called from tested unit A, using tested units B
and C, and stubs for units F, G, H, | and J.

Step (6)

Test unit F, by calling it from tested unit D, which is called from tested unit A, using tested units B,
C and E, and stubs for units G, H, | and J.

Step (7)

Test unit G, by calling it from tested unit D, which is called from tested unit A, using tested units
B, C, E and F, and stubs for units H, | and J.

Jagan Mohan Julooru

Driver

rt

v,
4
C
&)
tn
=
U
Fwa
5

Figure 4.1 - Isolation Testing

A unit test plan for the program shown in figure 4.1, using a strategy based on the isolation
organisational approach, need contain only one step, as follows: \4

Step (1) Q
(Note that there is only one step to the test plan. The sequence é-\ s &Im rtant, all

tests could be executed in parallel.)
d&&a&ace ofG?&and D;
it A

Test unit A, using a driver to start the t

Test unit B, using a driver to t m

Test unit C, usmg a drjver t ace of tg

Test unit D, Lﬁgg\a (o] caII it in place % nd stubs in place of units E, F and

Tegmt E, using a driv P Q%place of unit D and stubs in place of units H, | and

Test unit F, using a driver to call it in place of unit D;
Test unit G, using a driver to call it in place of unit D;
Test unit H, using a driver to call it in place of unit E;
Test unit |, using a driver to call it in place of unit E;

Test unit J, using a driver to call it in place of unit E.

Advantages

It is easier to test an isolated unit thoroughly, where the unit test is removed from the complexity
of other units. Isolation testing is the easiest way to achieve good structural coverage, and the
difficulty of achieving good structural coverage does not vary with the position of a unit in the unit
hierarchy.

Because only one unit is being tested at a time, the test drivers tend to be simpler than for bottom
up testing, while the stubs tend to be simpler than for top down testing. With an isolation
approach to unit testing, there are no dependencies between the unit tests, so the unit test phase
can overlap the detailed design and code phases of the software lifecycle. Any number of units
can be tested in parallel, to give a 'short and fat' unit test phase. This is a useful way of using an
increase in team size to shorten the overall time of a software development.

A further advantage of the removal of interdependency between unit tests, is that changes to a

unit only require changes to the unit test for that unit, with no impact on other unit tests. This
results in a lower cost than the bottom up or top down organisational approaches, especially

Jagan Mohan Julooru

you can that will convince others also that this is indeed a valid problem. Evidence may take the
form of documentation from user guides, specifications, requirements, and designs. It may be
past comments from customers, de-facto standards from competing products, or results from
previous versions of the product. Don’'t assume everyone sees things the same way you do. Don’t
expect people to read between the lines and draw the same conclusions as you. Don’t assume
that 3 weeks from now you will remember why you thought this was a bug. Think about what it is
that convinced you that this is a bug and include that in the report. You will have to provide even
more evidence if you think there is a chance that this situation may not be readily accepted by all
as a valid bug.

Mental Checklist

It is important that you develop an easily accessible mental checklist that you go over in your
mind each time you write a defect report. Inspections have proven to be the least expensive and
most effective means of improving software quality. It stands to reason, that the least expensive
most effective means of improving the quality of your defect reports is an inspection, even if it is
an informal self-inspection. It is important that using whatever memory techniques work for you
that these checklist items get implanted into your memory. In most cases, inadequate defect
reports are not due to an inability to write a good report. Usually, we just didn’t think about and
answer the right questions.

questions. You may find it useful to apply a mnemonic to the checklist. If you | letter

This mental checklist takes us through the process of thinking about and answeni e right
of each item on the checklist it spells CAN PIG RIDE? This is JUW‘ obnoxious
ly

enough that hopefully it will stick with you. If you spend ab inttes using this phrase
and associating it with the defect inspection checklist,

implanted in your memory. If ten items are ﬁ@ mem n concentrate on PIG. If
you do a good job on these thre WP cise Isolat Q&“ZG it will guide you to

have that mental checklist

\e\|\f A
21t pag®

A defect remark template can prove useful in making sure that the remarks provide the correct
information and answer the right questions. Some defect tracking tools may allow a template to
automatically be displayed whenever it prompts for defect remarks. Otherwise, you may have to
use cut and paste to insert a template into your remarks.

Jagan Mohan Julooru

emphasis is on verification to ensure that the design and programs accomplish the defined
requirements. During the test and installation phases, the emphasis is on inspection to determine
that the implemented system meets the system specification.

The chart below describes the Life Cycle verification activities.

Life Cycle Phase Verification Activities
Requirements o Determine verification approach.

e Determine adequacy of requirements.

e Generate functional test data.

e Determine consistency of design with requirements.
Design e Determine adequacy of design.

e Generate structural and functional test data.

e Determine consistency with design
Program (Build) e Determine adequacy of implementation

e Generate structural and functional test data for programs.
Test e Test application system.
Installation e Place tested system into production. \/
Maintenance e Modify and retest. ,-\ \ \Y\

Throughout the entire lifecycle, neither development nor \@19 stra|ght-I|ne activity.
Modifications or corrections to a structure at ong, p s‘@ modifications or re-verification
of structures produced during previous phase& 62&

2.0 Verification \\rewd\datﬁn{resting SE@%_ O“

@ fﬁh’ Strateg? age

The Verification Strategies, persons / teams involved in the testing, and the deliverable of that
phase of testing is briefed below:

Verification Strategy | Performed By Explanation Deliverable
Requirements Users, Developers, Requirement Review’s | Reviewed and
Reviews Test Engineers. help in base lining approved statement

desired requirements to | of requirements.
build a system.

Design Reviews Designers, Test Design Reviews help in | System Design
Engineers validating if the design Document, Hardware
meets the requirements | Design Document.
and build an effective

system.
Code Walkthroughs Developers, Subject Code Walkthroughs Software ready for
Specialists, Test help in analyzing the initial testing by the
Engineers. coding techniques and | developer.

if the code is meeting
the coding standards

Code Inspections Developers, Subject Formal analysis of the Software ready for
Specialists, Test program source code to | testing by the testing
Engineers. find defects as defined | team.

by meeting system

Jagan Mohan Julooru

during the Installation at
the user place.

Beta Testing Users. Testing of the Successfully installed
application after the and running
installation at the client | application.
place.

3.0 Testing Types

There are two types of testing:

1. Functional or Black Box Testing,
2. Structural or White Box Testing.

Before the Project Management decides on the testing activities to be performed, it should have
decided the test type that it is going to follow. If it is the Black Box, then the test cases should be
written addressing the functionality of the application. If it is the White Box, then the Test Cases
should be written for the internal and functional behavior of the system.

Functional testing ensures that the requirements are properly satisfied by the application system.
The functions are those tasks that the system is designed to accomplish.

Structural testing ensures sufficient testing of the implementation of a function. u\(

3.1 White Box Testing \@ C
White Box Testing; also know as glass box testmg is al where the tester involves
in testing the individual software programs u %

ds etc. l
Usmg white box testing met r|ve test ca
1) Guarantee that all i t . d hs w% been exercised at lease once,

2) Exercise a”% ions on theijr tru S|des

3) s at the ithin their operational bounds, and

4) %r se Internal data@m ensure their validity.

Advantages of White box testing:

1) Logic errors and incorrect assumptions are inversely proportional to the probability that a
program path will be executed.

2) Often, a logical path is not likely to be executed when, in fact, it may be executed on a regular

basis.
3) Typographical errors are random.

White Box Testing Types

There are various types of White Box Testing. Here in this framework | will address the most
common and important types.

3.1.1 Basis Path Testing

Basis path testing is a white box testing technique first proposed by Tom McCabe. The Basis
path method enables to derive a logical complexity measure of a procedural design and use this
measure as a guide for defining a basis set of execution paths. Test Cases derived to exercise
the basis set are guaranteed to execute every statement in the program at least one time during
testing.

Jagan Mohan Julooru

6.2 The ‘W’ Model
The following diagram depicts the ‘W’ model:

Regression
Round 3

Requirements

Requirements h
Review

Performance
Testing

Regression
Round 2

Specification
Review

System

Specification h
Testing

Integration

Testing UK

Regression
Round 1

Architecture Architecture

Detailed Design

\! (Kga\mlkthrough
epicts th?ﬁ% tarts from day one of the initiation of the project and
a

continues t|II the end. Th ble will illustrate the phases of activities that happen in the
‘W’ model:

SDLC Phase The first ‘V’ The second ‘V’

1. Requirements 1. Requirements Review 1. Build Test Strategy.

2. Plan for Testing.

3. Acceptance (Beta) Test Scenario
Identification.

2. Specification 2. Specification Review 1. System Test Case Generation.

3. Architecture 3. Architecture Review . Integration Test Case Generation.

4. Detailed Design 4. Detailed Design Review . Unit Test Case Generation.

5. Code 5. Code Walkthrough . Execute Unit Tests

. Execute Integration Tests.

. Regression Round 1.

. Execute System Tests.

. Regression Round 2.

. Performance Tests

. Regression Round 3

RS NGy UL\ L NG NI N | N IR N NI N UNIL N} NS N} .

. Performance/Beta Tests

Jagan Mohan Julooru

OBJECT ORIENTED TESTING
What is Object-Oriented?

This is an interesting question, answered by many scientists. | will just give a brief of the same.
"Objects" are re-usable components. General definition of "Object-Oriented Programming" is that
which combines data structures with functions to create re-usable objects.

What are the various Object Oriented Life Cycle Models?

What is mainly required in OOLife Cycle is that there should be iterations between phases. This is
very important. One such model which explains the importance of these iterations is the Fountain
Model.

This Fountain Model was proposed by Henderson-Sellers and Edwards in 1990. Various phases
in the Fountain Model are as follows:

Requirements Phase

Object-Oriented Analysis Phase \4
Object-Design Phase O u
Implementation Phase a\e C *

Implementation and Integration Phase 5 *

Operations Mode te
Maintenance NO 2&
Various phases in Foun I&m 6

Requirements ted Analy Fﬁ
n, Implem ph a gration Phase

Ob
p@tﬁ alo e and M ses

Also, each phase will have its own iterations. By adopting the Object-Oriented Application
Development, it is scientifically proved that the Maintenance of the software has a tremendous
drop. The software is easy to manage and adding new functionality or removing the old is well
within controll. This can be achieved without disturbing the overall functionality or other objects.
This can help reduce time in software maintenance.

My aim is not to provide informaiton on Object Oriented Application development, but to provide
information and techniques as to how to go about the testing of Object Oriented Systems.

Testing of Object Oriented Testing is the same as usual testing when you follow the conventional
Black Box testing (of course there will be differences depending on your Test Strategy).

But, otherwise, while testing Object Oriented Systems, we tend to adopt different Test Strategies.
This is because, the development cycle is different from the usual cycle(s). Why? This is an
interesting question. Why is testing of Object Oriented Systems different? First, let us cover the
basics of OOPS.

The Object Oriented Methodology

Let us look at the Object Modelling Technique(OMT) methodology:
Analysis:Starting from the statement of the problem, the analyst buildsa model of the real-world
situation showing its important properties.

Jagan Mohan Julooru

Object Diagrams

Object Diagrams describe the static structure of a system at a particular time. Whereas a class
model describes all possible situations, an object model describes a particular situation. Object
diagrams contain the following elements: Objects and Links.

Use Case Diagrams
Use Case Diagrams describe the functionality of a system and users of the system. These
diagrams contain the following elements: Actors and Use Cases.

Sequence Diagrams

Sequence Diagrams describe interactions among classes. These interactions are modeled as
exchange of messages. These diagrams focus on classes and the messages they exchange to
accomplish some desired behavior. Sequence diagrams are a type of interaction diagrams.
Sequence diagrams contain the following elements: Class Roles, Lifelines, Activations and
Messages.

Collaboration Diagrams

Collaboration Diagrams describe interactions among classes and associations. These
interactions are modeled as exchanges of messages between classes through their associations.
Collaboration diagrams are a type of interaction diagram. Collaboration diagrams contain the
following elements: Class Roles, Association Roles, Message Roles.

Statechart Diagrams

Statechart (or state) diagrams describe the states and responses ﬁ@e rt dlagrams
describe the behavior of a class in response to external ma. lagrams contain the
following elements: States, Transitions. O‘,eé

Activity Diagrams

Activity diagrams descrlb k&g" of a cI Bi s are similar to statechart
diagrams and usve tions, b describe the behavior of a class in
response essing rathe events as in statechart diagram.

Co xent Diagrams g

Component diagrams scribe the organization of and dependencies among software
implementation components. These diagrams contain components, which represent distributable
physical units; including source code, object code, and executable code.

Deployment Diagrams
Deployment diagrams describe the configuration of processing resource elements and the
mapping of software implementation components onto them. These diagrams contain
components and nodes, which represent processing or computational resources, including
computers, printers, etc.

Jagan Mohan Julooru

Alternate Flow 4: Actor clicks on <Clear>

Action

Response

1. Actor enters some information in the User
ID, Password or Connect field and then clicks
on <Clear>

1. Clear the contents in the fields and position
the cursor in the User ID field.

Alternate Flow 3: Actor clicks on <Cancel>

Action

Response

1. Actor clicks on <Cancel> button.

1. Close the login screen.

Business Rules

1. When the login screen is initially displayed, the <Login> and <Clear> buttons should be

disabled.

2. <Cancel> button should always be enabled.

3. When the actor enters any information in User ID, Password or selects any other
database in the list in the Connect To field, then enable <Clear> button.

4. When the actor enters information in User ID and Password fields, then enable <Login>

button.

and Cancel buttons.

5. The tabbing order should be User ID, Password, Connect To, Login, Passwﬂ ear

The Business Rules which we have addressed towards the
functionality of the use case. If there are any ﬁ

them here.

e\

Let us look at another w. f‘&] ve u
Business Rules \e\f\lo nin the us%ﬁ‘

a_\geé case are for the whole

vidual fields we can address

aseﬁhls@rmat | would be addressing the

Ac;?: ‘\a}!m a'RJsponse

Business Rule

1. Actor invokes the
application.

1. Display login page with 1.
User ID, Password, Connect
fields and Login, Clear and
Cancel buttons.

When the login screen
is initially displayed, the
<Login> and <Clear> buttons
should be disabled.

2. <Cancel> button
should always be enabled.
3. When the actor enters

any information in User ID,
Password or selects any other
database in the list in the
Connect To field, then enable
<Clear> button.

4. When the actor enters
information in User ID and
Password fields, then enable
<Login> button.

5. The tabbing order
should be User ID, Password,
Connect To, Login, Password,
Clear and Cancel buttons.

2. Actor enters User ID,

2. Authenticate and display the

Jagan Mohan Julooru

Password and clicks on home page.
<Login> button.

If actor enters wrong User ID,
see alternative flow 1.

If actor enters wrong
Password, see alternative flow
2.

If actor chooses to connect to
different database, see
alternative flow 3.

If actor clicks on <Clear>, see
alternative flow 4.

If actor clicks on <Cancel>,
see alternative flow 5.

(validation rules) for each step are addressed in the same row itself. In my
writing functional use cases then we can use the first format and w
interface use cases, then we can use the second format @

Understanding a Use Case N _‘ 62&

Understanding a @QNIS ing b|g i ﬁ—%h Qo read English and have a little bit of
reasom(gé ‘ %
Le?

look at understanc@ e wrltten use case itself.

In this format, the use case might look a bit jazzy, but it is easier to read. The busmes %‘
W}r are

he user

The use case depicts the behavior of the system. When you are reading the above use case you
read each step horizontally.

Look at step 1 written in the first type of use case:

Main Flow: Login

Action Response

1. Actor invokes the application. 1. Display login page with User ID, Password,
Connect fields along with Login, Clear and
Cancel buttons.

Here Action, is something which is performed by the user; and Response is the
application/system response to the action performed by the user.

Thus, you can understand that when the actor performs an action of invoking the application, the
login screen is displayed with the mentioned fields and information.

In the first type of writing use case, the Business Rules have been addressed below after all the
flows.

Jagan Mohan Julooru

In the second type of writing use case, the same Business Rules have been addressed in a third
column. Business Rules are nothing but special conditions which have to be satisfied by the
response of the system.

Testing Use Case’s

Testing Use Case’s calls for a through understanding the concept of use case, how to read it and
how do you derive test cases from it.

| will explain briefly a methodology | follow when deriving test cases and scenarios from Use
Cases.

For each actor involved in the use case, identify the possible sequence of interactions
between the system and the actor, and select those that are likely to produce different system
behaviors.

For each input data coming from an actor to the use case, or output generated from the use
case to an actor, identify the equivalence classes — sets of values which are likely to produce
equivalent behavior.

Identify Test Cases based on Range Value Analysis and Error Guessing.

Each test case represents one combination of values from each of the below: objects, actor
interactions, input / output data.

Based on the above analysis, produce a use case test table (scenario Qhu ase.
Select suitable combinations of the table entries to generate te\a é@ ations.
For each test table, identify the test cases (success Cé% ted.

Ensure all extensions are tested at Ieast Q
Maintain a Use Case Prioritizatio use caseédl r coverage as follows:

Use Case No R “qse":(sy i skA (Flequency Criticality Priority

‘

The Frequency column i

Q& umn in the t@ &@ es the risk involved in the Use Case.

ble describes how frequently the Use Case occurs in the system.

The Criticality column in the table describes the importance of the Use Case in the system.
The Priority column in the table describes the priority for testing by taking the priority of the use
case from the developer.

Some use cases might have to be tested more thoroughly based on the frequency of use,
criticality and the risk factors.

Test the most used parts of the program over a wider range of inputs than lesser user
portions to ensure better coverage.

Test more heavily those parts of the system that pose the highest risk to the project to ensure
that the most harmful faults are identified as soon as possible.

The most risk factors such as change in functionality, performance shortfall or change in
technology should be bared in mind.

Test the use cases more thoroughly, which have impact on the operation of the system.

The pre-conditions have to be taken into consideration before assuming the testing of the use
case. Make test cases for the failure of the pre-conditions and test for the functionality of the
use case.

The post-conditions speak about the reference to other use cases from the use case you are
testing. Make test cases for checking if the functionality from the current use case to the use
case to which the functionality should be flowing is working properly.

The business rules should be incorporated and tested at the place where appropriately where
they would be acting in the use case.

Maintain a Test Coverage Matrix for each use case. The following format can be used:

Jagan Mohan Julooru

UC No. UC Name Flow TC No’s No. of TC’s Tested Status

In the above table:

e The UC No. column describes the Use Case Number.

e The UC Name column describes the Use Case Name.

e The Flow column describes the flow applicable: Typical Flow, Alternate Flow 1, Alternate
Flow 2, etc.

e The TC No’s column describes the start and end test case numbers for the flow.

e The No. of TC’s column describes the total number of test cases written.

e The Tested column describes if the flow is tested or not.

e The Status column describes the status of the set of test cases, if they have passed or failed.

Jagan Mohan Julooru

Testers Dictionary

Alpha Test: Alpha testing happens at the development site just before the roll out of the
application to the customer. Alpha tests are conducted replicating the live environment where the
application would be installed and running

Behavioral Tests: Behavioral Tests are often used to find bugs in the high-level operations, at
the levels of features, operational profiles, and customer scenarios.

Beta Tests: Beta testing happens at the actual place of installation in the live environment. Here
the users play the role of testers.

Black Box Tests: Black Box tests aim at testing the functionality of the application basing on the
Requirements and Design documents.

Defect: Any deviation in the working of the application that is not mentioned in any documents in
SDLC can be termed as a defect.

Defect Density: Defect Density is the number of defects raised to the size of the progrv

Defect Report: A report, which lists the defects, noticed in the application. C

Grey Box Tests: Grey Box tests are a combination of Bl & @hlte Box tests.
Installation Tests: Installation tests w mstallatl pplication. Testing of
application for mstalllng on a wa e and sof nts is termed as

installation.

In tleestm two o pm&l’s which together accomplish a particular task.
Alsgr ion Tests a@ @ e binding and communication between programs.

Load Tests: Load testing aims at testing the maximum load the application can take basing on

the requirements. Load can be classified into number of users of the system, load on the
database etc.

Performance Tests: Performance tests are coupled with stress testing and usually require both
hardware and software instrumentation.

Quality Control

Relates to a specific product or service.

Verifies whether specific attributes are in, or are not in, a specific product or service.
Identifies defects for the primary purpose of correction defects. Is the responsibility of
team/workers.

Is concerned with a specific product.

Quality Assurance

Helps establish process.

Sets up measurements programs to evaluate processes.

Identifies weakness in processes and improves them.

Is management responsibility, frequently performed by staff function.

Is concerned with all of the products that will ever be produced by a process.

Is sometimes called quality control over Quality Control because it evaluates whether quality is
working.

Jagan Mohan Julooru

6.4 Defect Reporting

When defects are found, the testers will complete a defect report on the defect tracking
system. The defect tracking Systems is accessible by testers, developers & all
members of the project team. When a defect has been fixed or more information is needed,
the developer will change the status of the defect to indicate the current state. Once a
defect is verified as FIXED by the testers, the testers will close the defect report.

Article X. 7. Functions To Be Tested

The following is a list of functions that will be tested:

Add/update employee information

Search / Lookup employee information

Escape to return to Main Menu

Security features

Scaling to 700 employee records

Error messages

Report Printing

Creation of payroll file

Transfer of payroll file to the mainframe u\k
Screen mappings (GUI flow). Includes default settings

FICA Calculation \e .
State Tax Calculation esa-
Federal Tax Calculation NO‘,

Gross pay Calculat|on

S e \
By o™ 21 ©

Annua Calculatio

A %u‘ements Valldatl(?/\ | “map” the test cases back to the requirements. See
Deliverables.

Article XI. 8. Resources and Responsibilities

The Test Lead and Project Manager will determine when system test will start and end. The Test
lead will also be responsible for coordinating schedules, equipment, & tools for the testers as well
as writing/updating the Test Plan, Weekly Test Status reports and Final Test Summary report.
The testers will be responsible for writing the test cases and executing the tests. With the help of
the Test Lead, the Payroll Department Manager and Payroll clerks will be responsible for the Beta
and User Acceptance tests.

8.1. Resources

The test team will consist of:
= A Project Manager
= ATestLead
= 5 Testers
= The Payroll Department Manager
= 5 Payroll Clerks

Jagan Mohan Julooru

Fault Tolerance

The ability of a system or component to continue normal operation despite the presence of
hardware or software faults.

Flaw hypothesis methodology

A systems analysis and penetration technique in which specifications and documentation for
the system are analyzed and then flaws in the system are hypothesized. The list of
hypothesized flaws is then prioritized on the basis of the estimated probability that a flaw
exists and, assuming a flaw does exist, on the ease of exploiting it, and on the extent of
control or compromise it would provide. The prioritized list is used to direct a penetration
attack against the system.

Formal

Expressed in a restricted syntax language with defined semantics based on well-established
mathematical concepts.

Formal specification

(1) A specification of hardware or software functionality in a computer-readable language;
usually a precise mathematical description of the behavior of the system with the aim of
providing a correctness proof

Format

The organization of information according to preset specifications (usually ﬂ¥s
processing) [syn: formatting, data format, data formatting] \

Glossary §
A glossary is an alphabetical list of word &as nd the ecial or technical
meanings that they have in a parti b ect o) K
Hacker 'ﬁ
A perso \prlormg the deﬁ puters and how to stretch their capabilities.
|an|S|t| e aﬂ s to discover information by poking around. A
er ho enjoys I% etails of programming systems and how to stretch their
capablhtles as opposkd to most users who prefer to learn on the minimum necessary.

Implementation under test, IUT

The particular portion of equipment which is to be studied for testing. The implementation
may include one or more protocols.

Implementation vulnerability

A vulnerability resulting from an error made in the software or hardware implementation of a
satisfactory design.

Input
A variable (whether stored within a component or outside it) that is read by the component.
Instrument

1. A tool or device that is used to do a particular task. 2. A device that is used for making
measurements of something.

In software and system testing, to install or insert devices or instructions into hardware or
software to monitor the operation of a system or component.

Instrumentation

Instrumentation is a group or collection of instruments, usually ones that are part of the same
machine.

Jagan Mohan Julooru

Devices or instructions installed or inserted into hardware or software to monitor the
operation of a system or component.

The insertion of additional code into the program in order to collect information about program
behaviour during program execution.

(NBS) The insertion of additional code into a program in order to collect information about
program behavior during program execution. Useful for dynamic analysis techniques such as
assertion checking, coverage analysis, tuning.

Integrity
Assuring information will not be accidentally or maliciously altered or destroyed.
Sound, unimpaired or perfect condition.

Interface

(1) A shared boundary across which information is passed. (2) A Hardware or software
component that connects two or more other components for the purpose of passing
information from one to the other. (3) To connect two or more components for the purpose of
passing information from one to the other. (4) To serve as a connecting or connected
component as in (2).

(1) (ISO) A shared boundary between two functional units, defined by functional
characteristics, common physical interconnection characteristics, signal characterisiics, and
other characteristics, as appropriate. The concept involves the specification of the &ﬁecnon
of two devices having different functions. (2) A point of communication \&@ r more
processes, persons, or other physical entities. (3) A periphe eee ermits two or
more devices to communicate. é_

Interface testing O‘,e
Testing conducted to eva{ (e@msy tems or COW @%lﬂjata and control

correctly to each

Integrw re the inte ce%‘agsystem components are tested.

Any means of convegj or communicating ideas; specifically, human speech; the expression
of ideas by the voice; sounds, expressive of thought, articulated by the organs of the throat
and mouth.

Least privilege

Feature of a system in which operations are granted the fewest permissions possible in order
to perform their tasks.

The principle that requires that each subject be granted the most restrictive set of privileges
needed for the performance of authorized tasks. The application of this principle limits the
damage that can result from accident, error, or unauthorized use.

Liability
Liability for something such as debt or crime is the legal responsibility for it; a technical term
in law.

Malicious code, malicious logic, malware

(I) Hardware, software, or firmware that is intentionally included or inserted in a system for a
harmful purpose. (See: logic bomb, Trojan horse, virus, worm.)

Hardware, software, or firmware that is intentionally included in a system for an unauthorized
purpose; e.g., a Trojan horse.

Mutation analysis

Jagan Mohan Julooru

checklist of historically common programming errors, and analyzing its compliance with coding

standards.

Code Walkthrough: A formal testing technique where source code is traced by a group with a

small set of test cases, while the state of program variables is manually monitored, to analyze the

programmer's logic and assumptions.

Compatibility Testing: Testing whether software is compatible with other elements of a system

with which it should operate, e.g. browsers, Operating Systems, or hardware.

Component: A minimal software item for which a separate specification is available.

Component Testing: See Unit Testing.

Concurrency Testing: Multi-user testing geared towards determining the effects of accessing the

same application code, module or database records. Identifies and measures the level of locking,

deadlocking and use of single-threaded code and locking semaphores.

Conformance Testing: The process of testing that an implementation conforms to the

specification on which it is based. Usually applied to testing conformance to a formal standard.

Context Driven Testing: The context-driven testing is flavor of Agile Testing that ocates

continuous and creative evaluation of testing opportunities in light of th {i %mation

revealed and the value of that information to the organizati @v-o it can be defined as

testing driven by an understanding of the en rp @S
ica

example, the testing approach for m
different than that for al Qu erga

Conversiopa e t\ ing of pr %@edures used to convert data from existing
ﬁse in replac@e&g

Cyclomatic Complexity: A" measure of the logical complexity of an algorithm, used in white-box

and mtS ded use of software. For

I eq e would be completely

Sy f

testing.

Data Flow Diagram: A modeling notation that represents a functional decomposition of a system.
Data Driven Testing: Testing in which the action of a test case is parameterized by externally
defined data values, maintained as a file or spreadsheet. A common technique in Automated
Testing.

Dependency Testing: Examines an application's requirements for pre-existing software, initial
states and configuration in order to maintain proper functionality.

Depth Testing: A test that exercises a feature of a product in full detail.

Dynamic Testing: Testing software through executing it. See also Static Testing.

Emulator: A device, computer program, or system that accepts the same inputs and produces the
same outputs as a given system.

Endurance Testing: Checks for memory leaks or other problems that may occur with prolonged

execution.

Jagan Mohan Julooru

Network Sensitivity Tests: Network sensitivity tests are tests that set up scenarios of varying
types of network activity (traffic, error rates...), and then measure the impact of that traffic on
various applications that are bandwidth dependant. Very 'chatty’ applications can appear to be
more prone to response time degradation under certain conditions than other applications that
actually use more bandwidth. For example, some applications may degrade to unacceptable
levels of response time when a certain pattern of network traffic uses 50% of available bandwidth,
while other applications are virtually un-changed in response time even with 85% of available
bandwidth consumed elsewhere.

This is a particularly important test for deployment of a time critical application over a WAN.
Negative Testing: Testing aimed at showing software does not work. Also known as "test to fail".
N+1 Testing: A variation of Regression Testing. Testing conducted with multiple cycles in which
errors found in test cycle N are resolved and the solution is retested in test cycle N+1. The cycles
are typically repeated until the solution reaches a steady state and there are no errors. See also
Regression Testing.

Path Testing: Testing in which all paths in the program source code are tested at least
Performance Testing: Testing conducted to evaluate the compliance of %onent
with specified performance requirements. Often this is perfo ea. @ a@l
simulate large number of users. Also know ag."L g
Performance Tests are tests_that Q ﬁ o end

critical business_ proc@
se. This s

productlora
co@ of mfrastru?e

to be made before load teSting should be undertaken. For example, a customer search may take

tomated test tool to

arking) of various time

saction {Zte is under low load, but with a
ﬁﬁle performance expectation under a given
éghllghts very early in the testing process if changes need

15 seconds in a full sized database if indexes had not been applied correctly, or if an SQL 'hint'
was incorporated in a statement that had been optimized with a much smaller database. Such
performance testing would highlight such a slow customer search transaction, which could be
remediate prior to a full end to end load test.

Positive Testing: Testing aimed at showing software works. Also known as "test to pass".

Protocol Tests: Protocol tests involve the mechanisms used in an application, rather than the
applications themselves. For example, a protocol test of a web server may will involve a number
of HTTP interactions that would typically occur if a web browser were to interact with a web
server - but the test would not be done using a web browser. LoadRunner is usually used to
drive load into a system using VUGen at a protocol level, so that a small number of computers
(Load Generators) can be used to simulate many thousands of users.

Quality Assurance: All those planned or systematic actions necessary to provide adequate
confidence that a product or service is of the type and quality needed and expected by the

customer.

Jagan Mohan Julooru

Each test can be quite simple, For example, a test ensuring that 500 concurrent (idle) sessions
can be maintained by Web Servers and related equipment should be executed prior to a full 500
user end to end performance test, as a configuration file somewhere in the system may limit the
number of users to less than 500. It is much easier to identify such a configuration issue in a
Targeted Infrastructure Test than in a full end to end test.

Testability: The degree to which a system or component facilitates the establishment of test
criteria and the performance of tests to determine whether those criteria have been met.

Testing:

The process of exercising software to verify that it satisfies specified requirements and to detect
errors.

The process of analyzing a software item to detect the differences between existing and required
conditions (that is, bugs), and to evaluate the features of the software item.

The process of operating a system or component under specified conditions, observing or
recording the results, and making an evaluation of some aspect of the system or component.
Test Bed: An execution environment configured for testing. May consist of specific har re, OS,
network topology, configuration of the product under test, other appl|cat| %tware,
etc. The Test Plan for a project should enumerate the test b%(a Q

Test Case w
Test Case is a commonly used ter E pe test. Th ,le smallest unit of testing.
such

A Test Case will consxﬂm r a%@re esting, test steps, verification steps,
environm

prerequmé ee
uts, execut? ns, and expected outcomes developed for a particular
elcis

obJectlve, such as to ex e a particular program path or to verify compliance with a specific
requirement.

Test Driven Development: Testing methodology associated with Agile Programming in which
every chunk of code is covered by unit tests, which must all pass all the time, in an effort to
eliminate unit-level and regression bugs during development. Practitioners of TDD write a lot of
tests, i.e. an equal number of lines of test code to the size of the production code.

Test Driver: A program or test tool used to execute a tests. Also known as a Test Harness.

Test Environment: The hardware and software environment in which tests will be run, and any
other software with which the software under test interacts when under test including stubs and
test drivers.

Test First Design: Test-first design is one of the mandatory practices of Extreme Programming
(XP).It requires that programmers do not write any production code until they have first written a
unit test.

Test Harness: A program or test tool used to execute a test. Also known as a Test Driver.

Jagan Mohan Julooru

K
\\\otesa\e €0

yiew
?E%T AB?%%ATION EFFORT ESTIMATION

Babu Narayanan

Recommendations:

1. Neither group test case steps too close, nor wide for labeling the complexity. Be aware that the pre-script development
effort for each test script is considerable as the following activities are time-consuming operations:-
1) Executing test case manually before scripting for confirming the successful operation.
2) Test data selection and/or generation for the script. k
3) Script template creation (like header information, comme ntifying the right reusable to be used from the
repository and so on.) ¢

These efforts are highly based on the number ah\
any steps even this effort widely differs.

est case. Note that if test case varies by fewer steps, then this

effort does not deviate much but i
2. Also another factor mém ﬁe compl ﬁ%\léxtlonality repetition. If the test case is Complex by steps but the

functlonahty is er tesg cas, labeled as *Medium or Simple’ (based on the judgment).
Ifthe t count a 7 r control limit (~ 25 in this case) value then those additional steps need to
@ as anothe % F&r example, the TC - 06 containing 30 steps shall be labeled as
est cases.

<HE
Pre page

If the test case ‘Complex’ instead of *‘Medium’, understand that your efforts shoot up and hurts your customer. On
other way of miscalculation, it hurts us. There by, this compIeX|ty grouping’ is more of logical workout with data as input.

5. Scripting Effort Estimation

ESTIMATED EFFORT 4 \Z/
SL.NO SUB COMPONENT Simple Mediu @NB(REMARKS
(<8 steps) gése_bé 17-25 steps)

1 Pre-Script Development ~ M\ .

a Test Case execution (Manual)_ 'Y Yw 1% For 1 iteration (assuming scripter knows navigation)

b Test data selection VY™ [_ A For one data set (valid/invalid/erratic kind)

c Script Template ciﬁ s“\‘ E G 7 \ Can use script template generation utility to avoid this.

d Identlfyﬂ dye sable Py [Assuming proper reusable traceability matrix presence.
2 Scupt DRepxelo)\

a | gy E2%bMation map creaU&\n - Assuming the no of objects = number of actions

6{E \"’Base scripti [®) Normally all these go hand-in-hand. Separated for
d Addger e Hhandllng analysis & reasoning.

) d ImpEmeM frarfework elements
3 Script Execution

a Script execution For n iterations (~ average iteration count)

b Verification & Reporting Assuming there will minimal defect reporting.

Total Effort per script

Keyword driven

This total effort would vary if you choose key-word driven methodology but at the same time, the effort of building framework will

be high (for initial design and scripting).

'_'Q_'Do not use keyword driven approach for small projects.

'_'Qj'These efforts may differ based on the above discussed (section 2) factors. Suggest you to perform PoC for 2 scripts from each class to confirm.
"Q*'The negative test cases normally consume additional script efforts as the pattern changes.

Overall effort calculation may have the following components:-

Test Requirement gathering & Analysis
Framework design and development

Script Development
Integration Testing and Baseline.
Test Management.

SRl o

All these components shall include review (1/2 cycles).

Test Case development (incase the available manual test cases not compatible)

b) Ease of scheduling

This strategy saves scheduling nightmares, especially for big projects. Team members are
aware of their test execution responsibilities in this scenario.

However, this strategy might not be the most efficient in all circumstances. Following are
some of the factors which should also be considered together with the ones identified

above:

a) Errors might be overlooked

This occurs quite frequently where the test case owner fails to capture various possible
scenarios. This includes missing test cases, test cases based on misunderstood
requirements, and incorrect test case design(e.g., incorrect test case naming conventions).
These errors might not be caught if test case owners are executing the scripts written by
them. This becomes even more significant if there are no internal or external test case
reviews where these errors might be detected before the start of test execution cycle.

b) Casual approach \4
oV

.
Test cases might not be written with same conmdeg % others would be

executing them. Test cases, generally @t e written with following
considerations: ﬁ

-Write test cases W &, n%'gr(%l bQ‘ailly able to understand and execute

them.

- gace yourself with\the peg)n who might be executing it. Think what you would
expect from someone if you were executing their scripts. Make the test scripts
unambiguous, self-contained, and self-explanatory.

Following is a conversation between two test team members, who are in the middle of a
test case creation cycle:

“Use case XYZ seems pretty complex”, Peter said.

“Yes, and this has been assigned to me. There are a lot of different possible scenarios for
this use case”, John replied.

“So, you might end up with a lot of test cases for this use case”, Peter replied.

“Well....since I will be executing this use case, I will make sure to cover most of the
scenarios while testing. However, I might not document all of them. I am very well
familiar with this use case and don’t think I need to document everything I test. More so,
I can’t spend too much time on this because of scheduling constraints. As long as I test it
well, I think I am OK”, John said.

1 Introduction

Often testers encounter many Windows or web pages in an application. And each of these
Windows or web pages could have many objects within them. And each object would have
unique characteristics associated with them. (The typical Objects are Radio buttons, Push
buttons, Dropdown lists, Edit fields, Check boxes etc)

While designing test cases one ascertain each and every object state in detail in order to
cover the Functional Test cases along with the Error handling.

This paper intends to simplify the whole process of preparing test data with the aid of a

Microsoft Excel spread sheet. It also covers the basic concepts of BVA and Equivalence
partitioning techniques.

TestData Preparation for Data Driven Testing Page 3 of 13

2. Similarly, Test Step=C2&", "&F2&'" and click insert order button" would mean

concatenate “C2 contents i.e., Action1”, « 7 with “F2 Contents i.e., Action2” and
“and click insert order button”.

4 Summary

1. The test data table could be readily used for Data Driven testing and Key word
driven testing for a future usage.

2. 'This paper would be useful while preparing the test data for exhaustive
testing or mission critical applications (for example, Banking or military)
where every aspect of the application requires to be tested.

3. The formulas that are required to arrive at the various combinations of data for
different objects are as follows :

a. Radio button or Check box could have only two states either ON or OFF.
So, if 2 window has three Radio buttons or check boxes i 16 ‘%uld have 8

unique combinations of data.

(Formula would be “no. of states” * “ﬁ e&a\e 273 =18)
b. An edit ﬁe.ld W h&\g Qree s%& h @ﬁlar@ Valid data, Invalid data, then

S of data.

gl pane
(Fdrmula Would be @aa 7~ “no. of variables” i.e., 372 = 9)

A dropdown list could have two or more states depending upon the values it has, for
instance blank, valuel, value2, value3, value4, then one could have 25 unique
combinations of data.

(Formula would be “no. states” ™ no. of variables” i.e., 572 = 25)

c. In case when a window has 5 dropdown lists (each dropdown list has 3 values) and
2 edit fields (each edit field has 3 states), then one could have 2187 unique
combinations of data.

2 AN\ ¢

(F1=Formula for dropdown lists alone would be “no. states no. of variables” i.e.,

375 =243
F2=Formula for edit fields alone would be “no. states” ™ “no. of variables i.e., 3"2 =
9

TestData Preparation for Data Driven Testing Page 12 of 13

However, such diagrams can help testers to ascertain the functionality quickly and
effectively. Given below are some of the data models and how they can be cast to suit
testing needs.

ER Diagram approach

An Entity-Relationship diagram shows entities and their relationships. The ER diagram
relates to business data analysis and data base design.

There are three basic elements in ER models:
1. Entities are the "things" about which we seek information.
2. Attributes are the data we collect about the entities.
3. Relationships provide the structure needed to draw information from multiple
entities.

Before you draft an ERD for a screen, ask yourself these questions:

What/Who are the entities?

Is there more than one entity? Is there any relationship between these entities?
Does the entity have relationships other than the existing entities on the screen?
What are the qualities of the entities?

Cardinality of the entities (many-to-one, one-to-many)

Are 2 screens connected via entities? Can this be indicated via the ER diagram?

Is there additional information that cannot be captured through the ER diagral?K

NOUAWN-=

)
An ER Diagram uses the following notation for its 3 basic eﬁk@ ‘CO

Entity - t
1= 0“‘5\32 ot 62>
PV oq00

Attribute -

Relationship -

Example ER Diagram -

The screen given was named as “Update Repair Type” as seen below. The screen requires
the user to update the repair type while entering a valid reason and adding notes. User can
choose to Cancel or Save the task. (I gathered this by fiddling with the screen.)

Update Repair Type

Repair Type: Insurance

Mew Repair Type: ISelect... ;I

Zhange Reason: ISelect... ;I

Engineer Motes: ;I

Cancel Sane |

1. Define Entities -

The changing entities here are “New Repair Type”, “Change Reason” and “Engineer Notes”,
with Save and Cancel button being the other entities.

2. Define Attributes for the Entities -
Each of those entities has attributes. Based on the screen data availability, | determined
the following.
New Repair Type- Repair A, Repair B
Change Reason - Change Reason A, Change Reason B
Engineer Notes- Entry mandatory by user.
Cancel- Enabled
Save- Enabled and Disabled

Based on the input | gathered so far, | made the following ER Diagram

Repair Type

| Engineer Notes |
Coevnn U
0 V¥
.

| Change Reason | Sa\e " | save
o\ _
N OmB\QB of 62 T

P 6 e i@ 0

Define relationships between each entity. For e.g. in this example, only after | have
selected the repair type, can | select the change reason. Engineer Notes can be entered
any time. Save button only activates after | have entered all the fields. Cancel button is
available for cancellation at any point of time.

Cancel

My entity diagram could hence look like this -

| .
Repair A Repair B Reason B

Repair Type Change Reason |

After
Change
Reason

Engineer Notes |

|
Mandatory Field:
Entrv bv user
8

After
Engineer
Notes

Note here that, even though the Entity “Save” has 2 attributes, it has not been mentioned
in the complete E-R diagram, because it becomes implicit when one studies the diagram.

If the ER diagram gets complex in terms of relationships or attributes, it is advisable to
draw 2-3 ER diagrams for that screen. You can base any amount of information in the
diagram.

For e.g., if there is a database update, you can indicate database as an entity and indicate
the various tables as its attributes and indicate through the relationship when it is likely to
get updated.

Activity Model Diagram /UML
The UML enables you to model many different facets of your busine ;\o%al

; f@
business and its processes to IT functions such as d e & ;7 application
architectures, hardware designs, and much more. 5/
You can use the different types of UML djag E"@ arious types of models to suit
your needs. The model types and thi(.‘sa &
O

¢ £
Model Type = _ o | '\(Wddel Usages, (. ()N
Business B Busines orkflow, organization
i - re capture and organization

N
a atlevel understanding of the system being built, interaction
etween different software systems, communicate system design to

developers
Application Architecture of the lower-level designs inside the system itself
Database Design the structure of the database and how it will interact with

the application(s).

The UML contains two different basic diagram types:
Structure diagrams and Behavior diagrams.

An overview of some of these is listed below.

Structure diagrams depict the static structure of the elements in your system. The various
structure diagrams are as follows: -

Class diagrams are the most common diagrams used in UML modeling. They represent the
static things that exist in your system, their structure, and their interrelationships. They
are typically used to depict the logical and physical design of the system.

Component diagrams show the organization and dependencies among a set of components.
They show a system as it is implemented and how the pieces inside the system work
together.

Object diagrams show the relationships between a set of objects in the system. They show
a snapshot of the system at a point in time.

"_]
Q)
&‘?3

’ \

The organization's standard software process and the projects defined software
processes are improved continuously.

These defined standards give the organization a commitment to perform because:

e The organization follows a written policy for implementing software process
improvements.

e Senior management sponsors the organization's activities for software process
improvement.

The ability of the organization to perform transpires because:

e Adequate resources and funding are provided for software process improvement
activities.

e Software managers receive required training in software process improv

e The managers and technical staff of the software engineering ﬁg
software-related groups receive required training in s gﬁlglmprovement

e Senior management receives required trainiﬁeg process improvement.

The Process Area Act1v1t|‘§ nﬁde _‘ 623—
e A soft mprovem g%m(?s established which empowers the

e the processes of the organization.

e or amzagﬂ
€ group respo e organization's software process activities coordinates
the software process improvement activities.

e The organization develops and maintains a plan for software process improvement
according to a documented procedure.

e The software process improvement activities are performed in accordance with the
software process improvement plan.

e Software process improvement proposals are handled according to a documented
procedure.

e Members of the organization actively participate in teams to develop software
process improvements for assigned process areas.

e Where appropriate, the software process improvements are installed on a pilot basis
to determine their benefits and effectiveness before they are introduced into normal
practice.

e When the decision is made to transfer a software process improvement into normal
practice, the improvement is implemented according to a documented procedure.

e Records of software process improvement activities are maintained.

