$$\int \left(\frac{1}{\sqrt{25-u^2}}\right) \cdot \frac{1}{2} du$$

Pulling out 1/2

$$\frac{1}{2}\int \left(\frac{1}{\sqrt{25-u^2}}\right)du$$

Integrating by trigonometric substitution

Recall,
$$\int \left(\frac{1}{\sqrt{a^2-x^2}}\right) dx = \sin^{-1}\left(\frac{x}{a}\right) + c$$

Re-writing the Integral in the right pattern for the trigonometric substitution

$$\frac{1}{2}\int \left(\frac{1}{\sqrt{5^2-u^2}}\right)du$$

$$\frac{1}{2}sin^{-1}\left(\frac{u}{a}\right)+c$$

x= u

a=5
$$\frac{1}{2}sin^{-1}\left(\frac{u}{a}\right) + c$$
But, u= 2x-4
$$\int \left(\frac{\textbf{P_1re}}{\sqrt{9+16x-4x^2}}\right) dx = \frac{1}{2}sin^{-1}\left(\frac{\textbf{P_2re}}{5}\right) + c$$

CASE 2

Integrals in the form $\int \left(\frac{AX+B}{(ax^2+bx+c)^n}\right) dx$, where n is a positive integer and where

 $\frac{d}{dx}(ax^2 + bx + c) \neq Ax + B$, can be solved by splitting it into simpler integrals

that are in standard form.

WORKED EXAMPLE 1:

Find
$$\int \left(\frac{2x+3}{9x^2+6x+5}\right) dx$$

In this case, $\frac{d}{dx}(9x^2 + 6x + 5) = 18x + 6$.

x = u

a=2

$$\frac{7}{9}\left[\frac{1}{2}tan^{-1}\left(\frac{u}{2}\right)\right]+c$$

But, U=3x+1

Further simplifying

$$\frac{7}{18}tan^{-1}\left(\frac{3x+1}{2}\right)+c_2$$

$$\int \left(\frac{\frac{7}{3}}{9x^2+6x+5}\right) dx = \frac{7}{18} tan^{-1} \left(\frac{3x+1}{2}\right) + c_2$$

Therefore,

Therefore,
$$\int \left(\frac{2x+1}{9x^2+6x+5}\right) dx = \frac{1}{9} \ln(9x^2+6x+5) + \frac{7}{18} \tan^{-1}\left(\frac{3x+1}{2}\right) + C$$
NOTE: c_1 and c_2 have been replaced with a strate constant C

WORKER 12 AMPLE 2: Fin 10 $\left(\frac{CC}{2x^2-4x+5}\right)^2$ dx

In this case,
$$\frac{d}{dx}(x^2 + 4x + 5) = 2x + 4$$

We would need to re-write x+1 as a constant multiple of 2x+4

$$x+1=P(2x+4)+Q$$

Further simplifying

$$x+1=2Px+4P+Q$$

Equating corresponding coefficients

$$2P=1....(I)$$

$$4P+Q=1....(II)$$

Solving simultaneously