
GROUP THEORY 7

A Numerical example. Let n = 11 and

σ =
(

1 2 3 4 5 6 7 8 9 10
2 5 4 3 1 7 8 10 6 9

)
.

Then

σ = (1 2 5)(3 4)(6 7 8 10 9).

Now,

sgn( (1 2 5) ) = 1, sgn( (3 4) ) = −1, sgn( (6 7 8 10 9) ) = 1.

We conclude that sgn(σ) = −1.

Realizing Sn as linear transformations. Let F be any field. Let σ ∈ Sn. There is a unique linear Dummit & Foote
p.810transformation

Tσ : Fn −→ Fn,

such that

T (ei) = eσ(i), i = 1, . . . n,

where, as usual, e1, . . . , en are the standard basis of Fn. Note that

Tσ




x1

x2

...
xn


 =




xσ−1(1)

xσ−1(2)

...
xσ−1(n)


 .

(For example, because Tσx1e1 = x1eσ(1), the σ(1) coordinate is x1, namely, in the σ(1) place we have
the entry xσ−1(σ(1)).) Since for every i we have TσTτ (ei) = Tσeτ(i) = eστ(i) = Tστei, we have the
relation

TσTτ = Tστ .

The matrix representing Tσ is the matrix (aij) with aij = 0 unless i = σ(j). For example, for n = 4
the matrices representing the permutations (12)(34) and (1 2 3 4) are, respectively




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 .

Otherwise said,6

Tσ =
(
eσ(1) | eσ(2) | . . . | eσ(n)

)
=




eσ−1(1)

——–
eσ−1(2)

——–
...

——–
eσ−1(n)




.

6This gives the interesting relation Tσ−1 = T t
σ. Because σ 7→ Tσ is a group homomorphism we may conclude that

T−1
σ = T t

σ . Of course for a general matrix this doesn’t hold.
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GROUP THEORY 9

Exercise 2.4.3. Prove that the set of upper triangular matrices in GLn(F), where F is any field, forms
a subgroup of GLn(F ). It is also called a Borel subgroup.

Prove that the set of upper triangular matrices in GLn(F) with 1 on the diagonal, where F is any
field, forms a subgroup of GLn(F ). It is also called a unipotent subgroup.

Calculate the cardinality of these groups when F is a finite field of q elements.

end of 3-rd lecture
Consider the case R = C, the complex numbers, and the set of eight matrices

{
±

(
1 0
0 1

)
,±

(
i 0
0 −i

)
,±

(
0 1
−1 0

)
,±

(
0 i
i 0

)}
.

One verifies that this is a subgroup of GL2(C), called the Quaternion group. One can use the notation

±1,±i,±j,±k

for the matrices, respectively. Then we have

i2 = j2 = k2 = −1, ij = −ji = k, jk = i, ki = j.

2.5. Groups of small order. One can show that in a suitable sense (up to isomorphism, see § 8.1)
the following is a complete list of groups for the given orders. (In the middle column we give the
abelian groups and in the right column the non-abelian groups).

order abelian groups non-abelian groups

1 {1}
2 Z/2Z
3 Z/3Z
4 Z/2Z× Z/2Z, Z/4Z
5 Z/5Z
6 Z/6Z S3

7 Z/7Z
8 Z/2Z× Z/2Z× Z/2Z, Z/2Z× Z/4Z, Z/8Z D8, Q

9 Z/3Z× Z/3Z, Z/9Z
10 Z/10Z D10

11 Z/11Z
12 Z/2Z× Z/6Z, Z/12Z D12, A4, T

In the following table we list for every n the number G(n) of subgroups of order n (this is taken
from J. Rotman/An introduction to the theory of groups):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

G(n) 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1

n 20 21 22 23 24 25 26 27 28 29 30 31 32

G(n) 5 2 2 1 15 2 2 5 4 1 4 1 51
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GROUP THEORY 10

2.6. Direct product. Let G,H be two groups. Define on the cartesian product G×H multiplication Dummit & Foote
§1.1by

m : (G×H)× (G×H) −→ G×H, m((a, x), (b, y)) = (ab, xy).

This makes G×H into a group, called the direct product (also direct sum) of G and H.
One checks that G×H is abelian if and only if both G and H are abelian. The following relation

among orders hold: o(a, x) = lcm(o(a), o(x)). It follows that if G,H are cyclic groups whose orders
are co-prime then G×H is also a cyclic group.

Example 2.6.1. If H1 < H,G1 < G are subgroups then H1 ×G1 is a subgroup of H ×G. However,
not every subgroup of H × G is of this form. For example, the subgroups of Z/2Z × Z/2Z are
{0} × {0}, {0} × Z/2Z,Z/2Z × {0},Z/2Z × Z/2Z and the subgroup {(0, 0), (1, 1)} which is not a
product of subgroups.

3. Cyclic groups

Let G be a finite cyclic group of order n, G =< g >. Dummit & Foote
§2.3

Lemma 3.0.2. We have o(ga) = n/gcd(a, n).

Proof. Note that gt = gt−n and so gt = e if and only if n|t (cf. Corollary 1.2.2). Thus, the order
of ga is the minimal r such that ar is divisible by n. Clearly a · n/gcd(a, n) is divisible by n so the
order of ga is less or equal to n/gcd(a, n). On the other hand if ar is divisible by n then, because
n = gcd(a, n) · n/gcd(a, n), r is divisible by n/gcd(a, n). ¤

Proposition 3.0.3. For every h|n the group G has a unique subgroup of order h. This subgroup is
cyclic.

Proof. We first show that every subgroup is cyclic. Let H be a non trivial subgroup. Then there is
a minimal 0 < a < n such that ga ∈ H and hence H ⊇< ga >. Let gr ∈ H. We may assume that
r > 0. Write r = ka + k′ for 0 ≤ k′ < a. Note that gr−ka ∈ H. The choice of a then implies that
k′ = 0. Thus, H =< ga >.

Since gcd(a, n) = αa + βn we have ggcd(a,n) = (gn)β(ga)α ∈ H. Thus, ga−gcd(a,n) ∈ H. Therefore,
by the choice of a, a = gcd(a, n); that is, a|n. Thus, every subgroup is cyclic and of the form < ga >

for a|n. Its order is n/a. We conclude that for every b|n there is a unique subgroup of order b and it
is cyclic, generated by gn/b. ¤

Proposition 3.0.4. Let G be a finite group of order n such that for h|n the group G has at most one Dummit & Foote
P. 316subgroup of order h then G is cyclic.

Proof. We define Euler’s phi function as

φ(h) = ]{1 ≤ a ≤ h : gcd(a, h) = 1}.
This function has the following properties (that we take as facts):

• If n and m are relatively prime then φ(nm) = φ(n)φ(m).7

7This can be proved as follows. Using the Chinese Remainder Theorem Z/nmZ ∼= Z/nZ × Z/mZ as rings. Now
calculate the unit groups of both sides.
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GROUP THEORY 21

Finally, define a function

f : G/N −→ G/K, f(gN) = gK.

First, f is well defined: f(gnN) = gnK = gK for n ∈ N . Next, f is a homomorphism: f(gNg1N) =
f(gg1N) = gg1K = gKg1K = f(gN)f(g1N). Clearly, f is surjective. The kernel of f are the cosets
gN such that gK = K, i.e. g ∈ K. That is, the kernel of f is just K/N . We conclude by the First
Isomorphism Theorem. ¤

Example 11.0.8. Consider again the group homomorphism f : D8 −→ S2 × S2 constructed in Ex-
ample 9.0.4. Using the third isomorphism theorem we conclude that the graph of the subgroups of
D8 containing < x2 > is exactly that of S2 × S2 (analyzed in Example 2.6.1). Hence we have:

D8

ww
ww

ww
ww

w

GG
GG

GG
GG

G

D1

GG
GG

GG
GG

G D2 D3

ww
ww

ww
ww

w

< x2 >

{1}

S2 × S2

vv
vv

vv
vv

v

HH
HH

HH
HH

H

H1

GG
GG

GG
GG

G H2 H3

ww
ww

ww
ww

w

{e}

We’ll see later that this does not exhaust the list of subgroups of D8. Here we have
D1 =< x >,

D2 =< y, x2 >,

D3 =< xy, x2 >

and
H1 = f(D1) = {(1, 1), ((ab), (AB))},
H2 = f(D2) = {(1, 1), (1, (AB))},
H3 = f(D3) = {(1, 1), ((ab), 1)}.

end of lecture 9

Example 11.0.9. Let F be a field and let N = {diag[f, f, . . . , f ] : f ∈ F×} be the set of diagonal
matrices with the same non-zero element in each diagonal entry. We proved in an assignment that
N = Z(GLn(F)) and is therefore a normal subgroup. The quotient group

PGLn(F) := GLn(F)/N

is called the projective linear group.
Let Pn−1(F) be the set of equivalence classes of non-zero vectors in Fn under the equivalence v ∼ w

if there is f ∈ F∗ such that fv = w; that is, the set of lines through the origin. The importance of
the group PGLn(F) is that it acts as automorphisms on the projective n− 1-space Pn−1(F).

Let
π : GLn(F) −→ PGLn(F)

be the canonical homomorphism. The function

det : GLn(F) −→ F∗
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GROUP THEORY 23

Part 3. Group Actions on Sets

13. Basic definitions

Let G be a group and let S be a non-empty set. We say that G acts on S if we are given a function Dummit & Foote
§4.1

G× S −→ S, (g, s) 7−→ g ? s,

such that;
(i) e ? s = s for all s ∈ S;
(ii) (g1g2) ? s = g1 ? (g2 ? s) for all g1, g2 ∈ G and s ∈ S.

Given an action of G on S we can define the following sets. Let s ∈ S. Define the orbit of s

Orb(s) = {g ? s : g ∈ G}.

Note that Orb(s) is a subset of S, equal to all the images of the element s under the action of the
elements of the group G. We also define the stabilizer of s to be

Stab(s) = {g ∈ G : g ? s = s}.

Note that Stab(s) is a subset of G. In fact, it is a subgroup, as the next Lemma states.

One should think of every element of the group as becoming a symmetry of the set S. We’ll make
more precise later. For now, we just note that every element g ∈ G defines a function S −→ S by
s 7→ gs. This function, we’ll see later, is bijective.

14. Basic properties

Lemma 14.0.10. (1) Let s1, s2 ∈ S. We say that s1 is related to s2, i.e., s1 ∼ s2, if there exists
g ∈ G such that

g ? s1 = s2.

This is an equivalence relation. The equivalence class of s1 is its orbit Orb(s1).
(2) Let s ∈ S. The set Stab(s) is a subgroup of G.
(3) Suppose that both G and S have finitely many elements. Then

|Orb(s)| = |G|
|Stab(s)| .

Proof. (1) We need to show reflexive, symmetric and transitive. First, we have e ? s = s and
hence s ∼ s, meaning the relation is reflexive. Second, if s1 ∼ s2 then for a suitable g ∈ G we
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GROUP THEORY 32

the stabilizer is a subgroup. Apply that for r = 3, 5, 7 to see that if xr fixes a coloring so does x ,
which is impossible. 11

Now, x2 written as a permutation is (1 3 5 7)(2 4 6 8). We see that if, say 1 is green so are 3, 5, 7 and
the rest must be red. That is, all the freedom we have is to choose whether the cycle (1 3 5 7) is green
or red. This gives us two colorings fixed by x2. The same rational applies to x6 = (8 6 4 2)(7 5 3 1).

Consider now x4. It may written in permutation notation as (1 5)(2 6)(3 7)(4 8). In any coloring

fixed by x4 each of the cycles (1 5)(2 6)(3 7) and (4 8) must be single colored. There are thus
(

4
2

)
= 6

possibilities (Choosing which 2 out of the four cycles would be green).
It remains to deal with the elements yxi. We recall that these are all reflections. There are two

kinds of reflections. One may be written using permutation notation as

(i1 i2)(i3 i4)(i5 i6)

(with the other two vertices being fixed. For example y = (2 8)(3 7)(4 6) is of this form). The other
kind is of the form

(i1 i2)(i3 i4)(i5 i6)(i7 i8).

(For example yx = (1 8)(2 7)(3 6)(4 5) is of this sort). Whatever is the case, one uses similar reasoning
to deduce that there are 6 colorings preserved by a reflection.

One needs only apply CFF to get that there are

N =
1
16

(70 + 2 · 2 + 6 + 8 · 6) = 8

distinct necklaces.

17.3. The game of 16 squares. Sam Loyd (1841-1911) was America’s greatest puzzle expert and
invented thousands of ingenious and tremendously popular puzzles.

In this game, we are given a 4× 4 box with 15 squares numbered 1, 2, . . . , 15 and one free spot. At
every step one is allowed to move an adjacent square into the vacant spot. For example

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

7→
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

7→
1 2 3 4
5 6 7 8
9 10 12
13 14 11 15

7→
1 2 3 4
5 6 7 8
9 10 12
13 14 11 15

7→
1 2 3 4
5 6 7 8
9 14 10 12
13 11 15

Can one pass from the original position to the position below?

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

It turns out that the answer is no. Can you prove it? Apparently, the puzzle was originally marketed
with the tiles in the impossible position with the challenge to rearrange them into the initial position!

11x(32) = x9 = x because x8 = e, etc.
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GROUP THEORY 37

It still remains to consider the case where each σi is a transposition. Then, if σ = (i1i2)(i3i4) then
σ moves only 4 elements and thus fixes some element and we are done, else σ = (i1i2)(i3i4)(i5i6) . . . .
Let τ = (i1i2)(i3i5) then τστ−1σ = (i2i1)(i5i4)(i3i6) . . . (i1i2)(i3i4)(i5i6) · · · = (i3i5)(i4i6) . . . and so
is a permutation of the sort we were seeking.

Second step: N = An.
Consider the subgroups Gi = {σ ∈ An : σ(i) = i}. We note that each Gi is isomorphic to An−1

and hence is simple. By the preceding step, for some i we have that N ∩ Gi is a non-trivial normal
subgroup of Gi, hence equal to Gi.

Next, note that (12)(34)G1(12)(34) = G2 and, similarly, all the groups Gi are conjugate in An

to each other. It follows that N ⊇< G1, G2, . . . , Gn >. Now, every element in Sn is a product of
(usually not disjoint) transpositions and so every element σ in An is a product of an even number of
transpositions, σ = λ1µ1 . . . λrµr (λi, µi transpositions). Since n > 4 every product λiµi belongs to
some Gj and we conclude that < G1, G2, . . . , Gn >= An.

¤
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GROUP THEORY 43

Call this subgroup K. Then, we see that |K| = 4; it is preserved under conjugation hence is a
subgroup of all three 2-Sylow subgroups, say P, P ′, P ′′. We have the following picture

S4

{{
{{ EE

EE

P

CC
CC P ′ P ′′

yyyy

K

{e}

23.1.5. Groups of order pq. Let p < q be primes. Let G be a group of order pq. Then nq|p, nq ≡ 1
(mod q). Since p < q we have nq = 1 and the q-Sylow subgroup is normal (in particular, G is never
simple). Also, np|q, np ≡ 1 (mod p). Thus, either np = 1, or np = q and the last possibility can
happen only for q ≡ 1 (mod p).

We conclude that if p 6 |(q− 1) then both the p-Sylow P subgroup and the q-Sylow subgroup Q are
normal. Note that the order of P ∩ Q divides both p and q and so is equal to 1. Let x ∈ P, y ∈ Q

then [x, y] = (xyx−1)y−1 = x(yx−1y−1) ∈ P ∩Q = {1}. Thus, PQ, which is equal to G, is abelian.
We shall later see that whenever p|(q− 1) there is a non-abelian group of order pq (in fact, unique

up to isomorphism). The case of S3 falls under this.

23.1.6. Groups of order p2q. Let G be a group of order p2q, where p and q are distinct primes. We
prove that G is not simple:

If q < p then np ≡ 1 (mod p) and np|q < p, which implies that np = 1 and the p-Sylow subgroup
is normal.

Suppose that p < q, then nq ≡ 1 (mod q) and nq|p2, which implies that nq = 1 or p2. If nq = 1 then
the q-Sylow subgroup is normal. Assume that nq = p2. Each pair of the p2 q-Sylow subgroups intersect
only at the identity (since q is prime). Hence they account for 1+p2(q−1) elements. Suppose that there
were 2 p-Sylow subgroups. They intersect at most at a subgroup of order p. Thus, they contribute at
least 2p2−p new elements. All together we got at least 1+p2(q−1)+2p2−p = p2q+p2−p+1 > p2q

elements. That’s a contradiction and so np = 1; the p-Sylow subgroup is normal.

Remark 23.1.2. A theorem of Burnside states that a group of order paqb with a+ b > 1 is not simple.
You will prove in the assignments that groups of order pqr (p < q < r primes) are not simple. Note
that |A5| = 60 = 22 · 3 · 5 and A5 is simple. A theorem of Feit and Tompson says that a finite simple
group is either of prime order, or of even order.

23.1.7. GLn(F). Let F be a finite field with q elements. The order of GLn(F) is
(qn − 1)(qn − q) · · · (qn − qn−1) = q(n−1)n/2(qn − 1)(qn−1 − 1) · · · (q − 1). Thus, a p-Sylow has order
q(n−1)n/2. One such subgroup consists of the upper triangular matrices with 1 on the diagonal (the
unipotent group): 



1 ∗ . . . ∗
0 1 · · · ∗

. . .
0 0 . . . 1




Preview from Notesale.co.uk

Page 46 of 55



GROUP THEORY 44

Part 6. Finitely Generated Abelian Groups, Semi-direct Products and Groups of Low
Order

24. The structure theorem for finitely generated abelian groups

The structure theorem will proved in the next semester as a corollary of the structure theorem for
modules over a principal ideal domain. That same theorem will also yield the Jordan canonical form
of a matrix.

Theorem 24.0.3. Let G be a finitely generated abelian group. Then there exists a unique non-negative
integer r and integers 1 < n1|n2| . . . |nt (t ≥ 0) such that

G ∼= Zr × Z/n1Z× · · · × Z/ntZ.

Remark 24.0.4. The integer r is called the rank of G. The subgroup in G that corresponds to
Z/n1Z × · · · × Z/ntZ under such an isomorphism is canonical (independent of the isomorphism). It
is the subgroup of G of elements of finite order, also called the torsion subgroup of G and sometime
denoted Gtor.

On the other hand, the subgroup corresponding to Zr is not canonical and depends very much on
the isomorphism.

A group is called free abelian group if it is isomorphic to Zr for some r (the case t = 0 in the
theorem above). In this case, elements x1, . . . , xr of G that correspond to a basis of Zr are called a
basis of G; every element of G has the form a1x1 + · · ·+ arxr for unique integers a1, . . . , ar.

Remark 24.0.5. The Chinese remainder theorem gives that if n = pa1
1 · · · pas

s , pi distinct primes, then

Z/nZ ∼= Z/pa1
1 Z× · · · × Z/pas

s Z.

Thus, one could also write an isomorphism G ∼= Zr ×∏
i Z/pbi

i Z.

We shall also prove the following corollary in greater generality next semester.

Corollary 24.0.6. Let G,H be two free abelian groups of rank r. Let f : G −→ H be a homomorphism
such that G/f(H) is a finite group. There are bases x1, . . . , xr of G and y1, . . . , yr of H and integers
1 ≤ n1| . . . |nr such that f(yi) = nixi.

Example 24.0.7. Let G be a finite abelian p group, |G| = pn. Then G ∼= Z/pa1
1 Z × · · · × Z/pas

s Z
for unique ai satisfying 1 ≤ a1 ≤ · · · ≤ as and a1 + · · · + as = n. It follows that the number of
isomorphism groups of finite abelian groups of order pn is p(n) (the partition function of n).

25. Semi-direct products

Given two groups B,N we have formed their direct product G = N ×B. Identifying B, N with their
images {1} × B, N × {1} in G, we find that: (i) G = NB, (ii) NC G,BCG, (iii) N ∩ B = {1}.
Conversely, one can easily prove that if G is a group with subgroups B, N such that: (i) G = NB,
(ii) NCG,BC G, (iii) N ∩B = {1}, then G ∼= N ×B. The definition of a semi-direct product relaxes
the conditions a little.
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