
Lecture 6

spans the solution set of the system Ax = 0. Choosing for instance t = 2 we obtain the
solution

x = t





2
−1
1



 =





4
−2
2



 .

Therefore,

4v1 − 2v2 + 2v3 = 0

is a non-trivial linear combination of v1,v2,v3 that gives the zero vector 0. And, for instance,

v3 = −2v1 + v2

that is, v3 ∈ span{v1,v2}.

Below we record some simple observations on the linear independence of simple sets:

• A set consisting of a single non-zero vector {v1} is linearly independent. Indeed, if v1

is non-zero then

tv1 = 0

is true if and only if t = 0.

• A set consisting of two non-zero vectors {v1,v2} is linearly independent if and only if
neither of the vectors is a multiple of the other. For example, if v2 = tv1 then

tv1 − v2 = 0

is a non-trivial linear combination of v1,v2 giving the zero vector 0.

• Any set {v1,v2, . . . ,vp} containing the zero vector, say that vp = 0, is linearly depen-
dent. For example, the linear combination

0v1 + 0v2 + · · ·+ 0vp−1 + 2vp = 0

is a non-trivial linear combination giving the zero vector 0.

6.2 The maximum size of a linearly independent set

The next theorem puts a constraint on the maximum size of a linearly independent set in
R

n.

Theorem 6.7: Let {v1,v2, . . . ,vp} be a set of vectors in R
n. If p > n then v1,v2, . . . ,vp

are linearly dependent. Equivalently, if the vectors v1,v2, . . . ,vp in R
n are linearly inde-

pendent then p ≤ n.
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Lecture 7

Lecture 7

Introduction to Linear Mappings

7.1 Vector mappings

By a vector mapping we mean simply a function

T : Rn → R
m.

The domain of T is R
n and the co-domain of T is R

m. The case n = m is allowed of
course. In engineering or physics, the domain is sometimes called the input space and the
co-domain is called the output space. Using this terminology, the points x in the domain
are called the inputs and the points T(x) produced by the mapping are called the outputs.

Definition 7.1: The vector b ∈ R
m is in the range of T, or in the image of T, if there

exists some x ∈ R
n such that T(x) = b.

In other words, b is in the range of T if there is an input x in the domain of T that outputs
b = T(x). In general, not every point in the co-domain of T is in the range of T. For
example, consider the vector mapping T : R2 → R

2 defined as

T(x) =

[
x2
1 sin(x2)− cos(x2

1 − 1)

x2
1 + x2

2 + 1

]

.

The vector b = (3,−1) is not in the range of T because the second component of T(x) is
positive. On the other hand, b = (−1, 2) is in the range of T because

T

([
1
0

])

=

[
12 sin(0)− cos(12 − 1)

12 + 02 + 1

]

=

[
−1
2

]

= b.

Hence, a corresponding input for this particular b is x = (1, 0). In Figure 7.1 we illustrate
the general setup of how the domain, co-domain, and range of a mapping are related. A
crucial idea is that the range of T may not equal the co-domain.
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Introduction to Linear Mappings

If we scale v by any c > 0 then performing the same computation as above we obtain that
Tθ(cv) = cT(v). Therefore, Tθ is a matrix mapping with corresponding matrix

A =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]

.

Thus, Tθ is a linear mapping.

Example 7.11. (Projections) Let T : R3 → R
2 be the vector mapping

T









x1

x2

x3







 =





x1

x2

0



 .

Show that T is a linear mapping and describe the range of T.

Solution. First notice that

T









x1

x2

x3







 =





x1

x2

0



 =





1 0 0
0 1 0
0 0 0









x1

x2

x3



 .

Thus, T is a matrix mapping corresponding to the matrix

A =





1 0 0
0 1 0
0 0 0



 .

Therefore, T is a linear mapping. Geometrically, T takes the vector x and projects it to the
(x1, x2) plane, see Figure 7.2. What is the range of T? The range of T consists of all vectors
in R

3 of the form

b =





t
s
0





where the numbers t and s are arbitrary. For each b in the range of T, there are infinitely
many x’s such that T(x) = b.

b

b

b

x =





x1

x2

x3





T(x) =





x1

x2

0





Figure 7.2: Projection onto the (x1, x2) plane
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Onto, One-to-One, and Standard Matrix

Theorem 8.11: Let TA : Rn → R
m be a matrix mapping, where A = [v1 v2 · · · vn] ∈

Mm×n. The following statements are equivalent:

1. TA is one-to-one.

2. The rank of A is r = rank(A) = n.

3. The columns v1,v2, . . . ,vn are linearly independent.

Example 8.12. Let TA : R4 → R
3 be the matrix mapping with matrix

A =





3 −2 6 4
−1 0 −2 −1
2 −2 0 2



 .

Is TA one-to-one?

Solution. By Theorem 8.11, TA is one-to-one if and only if the columns of A are linearly
independent. The columns of A lie in R

3 and there are n = 4 columns. From Lecture 6, we
know then that the columns are not linearly independent. Therefore, TA is not one-to-one.
Alternatively, A will have rank at most r = 3 (why?). Therefore, the solution set to Ax = 0
will have at least one parameter, and thus there exists infinitely many solutions to Ax = 0.
Intuitively, because R

4 is “larger” than R
3, the linear mapping TA will have to project R

4

onto R
3 and thus infinitely many vectors in R

4 will be mapped to the same vector in R
3.

Example 8.13. Let TA : R2 → R
3 be the matrix mapping with matrix

A =





1 0
3 −1
2 0





Is TA one-to-one?

Solution. By inspection, we see that the columns of A are linearly independent. Therefore,
TA is one-to-one. Alternatively, one can compute that

rref(A) =





1 0
0 1
0 0





Therefore, r = rank(A) = 2, which is equal to the number columns of A.
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