spans the solution set of the system Ax = 0. Choosing for instance t = 2 we obtain the solution

$$\mathbf{x} = t \begin{bmatrix} 2\\-1\\1 \end{bmatrix} = \begin{bmatrix} 4\\-2\\2 \end{bmatrix}.$$

Therefore,

$$4\mathbf{v}_1 - 2\mathbf{v}_2 + 2\mathbf{v}_3 = \mathbf{0}$$

is a non-trivial linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ that gives the zero vector **0**. And, for instance,

$$\mathbf{v}_3 = -2\mathbf{v}_1 + \mathbf{v}_2$$

that is, $\mathbf{v}_3 \in \operatorname{span}{\{\mathbf{v}_1, \mathbf{v}_2\}}$.

Below we record some simple observations on the linear independence of simple sets:

• A set consisting of a single non-zero vector $\{\mathbf{v}_1\}$ is linearly independent. Indeed, if \mathbf{v}_1 Notesale.co.uk is non-zero then

$$_{1}=0$$

is true if and only if t = 0.

• A set consisting of two non z no vectors { \mathbf{v}_1 , \mathbf{v}_2 is meanly independent if and only if neither of the vectors is a multiple of the othe. For example, if $\mathbf{v}_2 = t\mathbf{v}_1$ then $t\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{0}$ 6

is a non-trivial linear combination of $\mathbf{v}_1, \mathbf{v}_2$ giving the zero vector $\mathbf{0}$.

• Any set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ containing the zero vector, say that $\mathbf{v}_p = \mathbf{0}$, is linearly dependent. For example, the linear combination

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_{p-1} + 2\mathbf{v}_p = \mathbf{0}$$

is a non-trivial linear combination giving the zero vector $\mathbf{0}$.

6.2The maximum size of a linearly independent set

The next theorem puts a constraint on the maximum size of a linearly independent set in \mathbb{R}^{n} .

Theorem 6.7: Let $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\}$ be a set of vectors in \mathbb{R}^n . If p > n then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ are linearly dependent. Equivalently, if the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ in \mathbb{R}^n are linearly independent then $p \leq n$.

Lecture 7

Introduction to Linear Mappings

7.1 Vector mappings

By a vector mapping we mean simply a function

 $\mathsf{T}: \mathbb{R}^n \to \mathbb{R}^m$. The **domain** of T is \mathbb{R}^n and the **co-domain** of T is \mathbb{R}^n . The case n = m is allowed of course. In engineering or physics, the domain is called the **input space** and the co-domain is called the **output space**. Using this terminology, the points \mathbf{x} in the domain are called the **inputs** and therebite $\mathsf{T}(\mathbf{x})$ produced by the mapping are called the **outputs**. **Definition**. The vector $\mathsf{F}(\mathbb{R}^n)$ is in the **range** of T , or in the **image** of T , if there exists some $\mathbf{x} \in \mathbb{R}^n$ such that $\mathsf{T}(\mathbf{x}) = \mathbf{b}$.

In other words, **b** is in the range of T if there is an input **x** in the domain of T that outputs $\mathbf{b} = \mathsf{T}(\mathbf{x})$. In general, not every point in the co-domain of T is in the range of T. For example, consider the vector mapping $\mathsf{T} : \mathbb{R}^2 \to \mathbb{R}^2$ defined as

$$\mathsf{T}(\mathbf{x}) = \begin{bmatrix} x_1^2 \sin(x_2) - \cos(x_1^2 - 1) \\ \\ x_1^2 + x_2^2 + 1 \end{bmatrix}.$$

The vector $\mathbf{b} = (3, -1)$ is not in the range of T because the second component of $T(\mathbf{x})$ is positive. On the other hand, $\mathbf{b} = (-1, 2)$ is in the range of T because

$$\mathsf{T}\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1^{2}\sin(0) - \cos(1^{2} - 1)\\1^{2} + 0^{2} + 1\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} = \mathbf{b}.$$

Hence, a corresponding input for this particular **b** is $\mathbf{x} = (1, 0)$. In Figure 7.1 we illustrate the general setup of how the domain, co-domain, and range of a mapping are related. A crucial idea is that the range of T may not equal the co-domain.

If we scale \mathbf{v} by any c > 0 then performing the same computation as above we obtain that $\mathsf{T}_{\theta}(c\mathbf{v}) = c\mathsf{T}(\mathbf{v})$. Therefore, T_{θ} is a matrix mapping with corresponding matrix

$$\mathbf{A} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Thus, T_{θ} is a linear mapping.

Example 7.11. (Projections) Let $\mathsf{T} : \mathbb{R}^3 \to \mathbb{R}^2$ be the vector mapping

$$\mathsf{T}\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}x_1\\x_2\\0\end{bmatrix}.$$

Show that T is a linear mapping and describe the range of $\mathsf{T}.$

Solution. First notice that

$$\mathsf{T}\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}x_1\\x_2\\0\end{bmatrix} = \begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{bmatrix} \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}. \mathsf{CO}\mathsf{U}\mathsf{K}$$

Thus, T is a matrix mapping corresponding to the matrix

Preview
$$page \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

Therefore, T is a linear mapping. Geometrically, T takes the vector \mathbf{x} and projects it to the (x_1, x_2) plane, see Figure 7.2. What is the range of T? The range of T consists of all vectors in \mathbb{R}^3 of the form

$$\mathbf{b} = \begin{bmatrix} t \\ s \\ 0 \end{bmatrix}$$

where the numbers t and s are arbitrary. For each **b** in the range of **T**, there are infinitely many **x**'s such that $T(\mathbf{x}) = \mathbf{b}$.

Figure 7.2: Projection onto the (x_1, x_2) plane

64

Theorem 8.11: Let $\mathsf{T}_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^m$ be a matrix mapping, where $\mathbf{A} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] \in$ $M_{m \times n}$. The following statements are equivalent:

- 1. $\mathsf{T}_{\mathbf{A}}$ is one-to-one.
- 2. The rank of **A** is $r = \operatorname{rank}(\mathbf{A}) = n$.
- 3. The columns $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent.

Example 8.12. Let $\mathsf{T}_{\mathbf{A}}: \mathbb{R}^4 \to \mathbb{R}^3$ be the matrix mapping with matrix

$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 6 & 4 \\ -1 & 0 & -2 & -1 \\ 2 & -2 & 0 & 2 \end{bmatrix}$$

Is T_A one-to-one?

Solution. By Theorem 8.11, T_A is one-to-one if and only **a theo**lumns of **A** are linearly independent. The columns of **A** lie in \mathbb{D}^3 are held. independent. The columns of \mathbf{A} lie in \mathbb{R}^3 and there $\mathbf{G} = 4$ columns. From Lecture 6, we know then that the columns are not linearly independent. Therefore, $\mathsf{T}_{\mathbf{A}}$ is not one-to-one. Alternatively, \mathbf{A} will have rackat next r = 3 (why?), therefore, the solution set to $\mathbf{Ax} = \mathbf{0}$ will have at least an eventumeter, and thus there exists infinitely many solutions to $\mathbf{Ax} = \mathbf{0}$. Intuitively because \mathbb{R}^4 is "larger" that \mathbb{R}^3 , the linear mapping $\mathsf{T}_{\mathbf{A}}$ will have to project \mathbb{R}^4 onto \mathbb{R}^4 and thus infinitely many vectors in \mathbb{R}^4 will be mapped to the same vector in \mathbb{R}^3 . \Box

Example 8.13. Let $\mathsf{T}_{\mathbf{A}}: \mathbb{R}^2 \to \mathbb{R}^3$ be the matrix mapping with matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0\\ 3 & -1\\ 2 & 0 \end{bmatrix}$$

Is $T_{\mathbf{A}}$ one-to-one?

Solution. By inspection, we see that the columns of A are linearly independent. Therefore, $\mathsf{T}_{\mathbf{A}}$ is one-to-one. Alternatively, one can compute that

$$\mathtt{rref}(\mathbf{A}) = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$$

Therefore, $r = \operatorname{rank}(\mathbf{A}) = 2$, which is equal to the number columns of **A**.

70