
Lecture 12

since then rows k and j are equal. The jth row of B is bj = aj +βak. Therefore, expanding
detB along the jth row:

detB = (aj + βak) · cTj

= aj · cTj + β
(
ak · cTj

)

= detA.

Example 12.5. Suppose that A is a 4 × 4 matrix and suppose that detA = 11. If B is
obtained from A by interchanging rows 2 and 4, what is detB?

Solution. Interchanging (or swapping) rows changes the sign of the determinant. Therefore,

detB = −11.

Example 12.6. Suppose that A is a 4 × 4 matrix and suppose that detA = 11. Let
a1, a2, a3, a4 denote the rows of A. If B is obtained from A by replacing row a3 by 3a1+ a3,
what is detB?

Solution. This is a Type 3 elementary row operation, which preserves the value of the de-
terminant. Therefore,

detB = 11.

Example 12.7. Suppose that A is a 4 × 4 matrix and suppose that detA = 11. Let
a1, a2, a3, a4 denote the rows of A. If B is obtained from A by replacing row a3 by 3a1+7a3,
what is detB?

Solution. This is not quite a Type 3 elementary row operation because a3 is multiplied by
7. The third row of B is b3 = 3a1 + 7a3. Therefore, expanding detB along the third row

detB = (3a1 + 7a3) · cT3

= 3a1 · cT3 + 7a3 · cT3

= 7(a3 · cT3 )

= 7 detA

= 77
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Vector Spaces

(6) The scalar multiple of v by α, denoted αv, is in V. (closure under scalar multiplica-
tion)

(7) α(u+ v) = αu+ αv

(8) (α + β)v = αv + βv

(9) α(βv) = (αβ)v

(10) 1v = v

It can be shown that 0 · v = 0 for any vector v in V. To better understand the definition of
a vector space, we first consider a few elementary examples.

Example 14.2. Let V be the unit disc in R
2:

V = {(x, y) ∈ R
2 | x2 + y2 ≤ 1}

Is V a vector space?

Solution. The circle is not closed under scalar multiplication. For example, take u = (1, 0) ∈
V and multiply by say α = 2. Then αu = (2, 0) is not in V. Therefore, property (6) of the
definition of a vector space fails, and consequently the unit disc is not a vector space.

Example 14.3. Let V be the graph of the quadratic function f(x) = x2:

V =
{

(x, y) ∈ R
2 | y = x2

}

.

Is V a vector space?

Solution. The set V is not closed under scalar multiplication. For example, u = (1, 1) is a
point in V but 2u = (2, 2) is not. You may also notice that V is not closed under addition
either. For example, both u = (1, 1) and v = (2, 4) are in V but u+ v = (3, 5) and (3, 5) is
not a point on the parabola V. Therefore, the graph of f(x) = x2 is not a vector space.
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Lecture 14

Example 14.15. A square matrix A is said to be symmetric if AT = A. For example,
here is a 3× 3 symmetric matrix:

A =





1 2 −3
2 4 5
−3 5 7





Verify for yourself that we do indeed have that AT = A. Let W be the set of all symmetric
n× n matrices. Is W a subspace of V = Mn×n?

Example 14.16. For any vector space V, there are two trivial subspaces in V, namely, V
itself is a subspace of V and the set consisting of the zero vector W = {0} is a subspace of
V.

There is one particular way to generate a subspace of any given vector space V using the
span of a set of vectors. Recall that we defined the span of a set of vectors in R

n but we can
define the same notion on a general vector space V.

Definition 14.17: Let V be a vector space and let v1,v2, . . . ,vp be vectors in V. The
span of {v1, . . . ,vp} is the set of all linear combinations of v1, . . . ,vp:

span{v1,v2, . . . ,vp} =
{

t1v1 + t2v2 + · · ·+ vpvp | t1, t2, . . . , tp ∈ R

}

.

We now show that the span of a set of vectors in V is a subspace of V.

Theorem 14.18: If v1,v2, . . . ,vp are vectors in V then span{v1, . . . ,vp} is a subspace of
V.

Solution. Let u = t1v1+· · ·+tpvp andw = s1v1+· · ·+spvp be two vectors in span{v1,v2, . . . ,vp}.
Then

u+w = (t1v1 + · · ·+ tpvp) + (s1v1 + · · ·+ spvp) = (t1 + s1)v1 + · · ·+ (tp + sp)vp.

Therefore u+w is also in the span of v1, . . . ,vp. Now consider αu:

αu = α(t1v1 + · · ·+ tpvp) = (αt1)v1 + · · ·+ (αtp)vp.

Therefore, αu is in the span of v1, . . . ,vp. Lastly, since 0v1 + 0v2 + · · ·+ 0vp = 0 then the
zero vector 0 is in the span of v1,v2, . . . ,vp. Therefore, span{v1,v2, . . . ,vp} is a subspace
of V.

Given a general subspace W of V, if w1,w2, . . . ,wp are vectors in W such that

span{w1,w2, . . . ,wp} = W

then we say that {w1,w2, . . . ,wp} is a spanning set of W. Hence, every vector in W can
be written as a linear combination of the vectors w1,w2, . . . ,wp.

After this lecture you should know the following:
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Lecture 15

Lecture 15

Linear Maps

Before we begin this Lecture, we review subspaces. Recall that W is a subspace of a vector
space V if W is a subset of V and

1. the zero vector 0 in V is also in W,

2. for any vectors u,v in W the sum u+ v is also in W, and

3. for any vector u in W and any scalar α the vector αu is also in W.

In the previous lecture we gave several examples of subspaces. For example, we showed that
a line through the origin in R

2 is a subspace of R2 and we gave examples of subspaces of
Pn[t] and Mn×m. We also showed that if v1, . . . ,vp are vectors in a vector space V then

W = span{v1,v2, . . . ,vp}

is a subspace of V.

15.1 Linear Maps on Vector Spaces

In Lecture 7, we defined what it meant for a vector mapping T : Rn → R
m to be a linear

mapping. We now want to introduce linear mappings on general vector spaces; you will
notice that the definition is essentially the same but the key point to remember is that the
underlying spaces are not Rn but a general vector space.

Definition 15.1: Let T : V → U be a mapping of vector spaces. Then T is called a linear
mapping if

• for any u,v in V it holds that T(u+ v) = T(u) + T(v), and

• for any scalar α and u in V is holds that T(αv) = αT(v).

Example 15.2. Let V = Mn×n be the vector space of n× n matrices and let T : V → V be
the mapping

T(A) = A+AT .

117

Preview from Notesale.co.uk

Page 22 of 25


