
Inner Products and Orthogonality

Example 20.3. Let u = (2,−5,−1) and let v = (3, 2,−3). Compute u • v, v •u, u • u, and
v • v.

Solution. By definition:

u • v = (2)(3) + (−5)(2) + (1)(−3) = −1

v • u = (3)(2) + (2)(−5) + (−3)(1) = −1

u • u = (2)(2) + (−5)(−5) + (−1)(−1) = 30

v • v = (3)(3) + (2)(2) + (−3)(−3) = 22.

We now define the length or norm of a vector in R
n.

Definition 20.4: The length or norm of a vector u ∈ R
n is defined as

‖u‖ =
√
u • u =

√

u2
1 + u2

2 + · · ·+ u2
n.

A vector u ∈ R
n with norm 1 will be called a unit vector:

‖u‖ = 1.

Below is an important property of the inner product.

Theorem 20.5: Let u ∈ R
n and let α be a scalar. Then

‖αu‖ = |α|‖u‖.

Proof. We have

‖αu‖ =
√

(αu) • (αu)

=
√

α2(u • u)

= |α|
√
u • u

= |α|‖u‖.

By Theorem 20.5, any non-zero vector u ∈ R
n can be scaled to obtain a new unit vector

in the same direction as u. Indeed, suppose that u is non-zero so that ‖u‖ 6= 0. Define the
new vector

v =
1

‖u‖u
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Lecture 20

Notice that α = 1

‖u‖ is just a scalar and thus v is a scalar multiple of u. Then by Theorem 20.5
we have that

‖v‖ = ‖αu‖ = |α| · ‖u‖ =
1

‖u‖ · ‖u‖ = 1

and therefore v is a unit vector, see Figure 20.1. The process of taking a non-zero vector u
and creating the new vector v = 1

‖u‖u is sometimes called normalization of u.

u

v = 1

‖u‖u

Figure 20.1: Normalizing a non-zero vector.

Example 20.6. Let u = (2, 3, 6). Compute ‖u‖ and find the unit vector v in the same
direction as u.

Solution. By definition,

‖u‖ =
√
u • u =

√
22 + 32 + 62 =

√
49 = 7.

Then the unit vector that is in the same direction as u is

v =
1

‖u‖u =
1

7





2
3
6



 =





2/7
3/7
6/7





Verify that ‖v‖ = 1:

‖v‖ =
√

(2/7)2 + (3/7)2 + (6/7)2 =
√

4/49 + 9/49 + 36/49 =
√

49/49 =
√
1 = 1.

Now that we have the definition of the length of a vector, we can define the notion of
distance between two vectors.

Definition 20.7: Let u and v be vectors in R
n. The distance between u and v is the

length of the vector u − v. We will denote the distance between u and v by d(u,v). In
other words,

d(u,v) = ‖u− v‖.

Example 20.8. Find the distance between u =

[
3

−2

]

and v =

[
7

−9

]

.

Solution. We compute:

d(u,v) = ‖u− v‖ =
√

(3− 7)2 + (−2 + 9)2 =
√
65.
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Lecture 20

Theorem 20.12: Let {u1,u2, . . . ,up} be an orthogonal set of non-zero vectors in R
n.

Then the set {u1,u2, . . . ,up} is linearly independent. In particular, if p = n then the set
{u1,u2, . . . ,un} is basis for Rn.

Solution. Suppose that there are scalars c1, c2, . . . , cp such that

c1u1 + c2u2 + · · ·+ cpup = 0.

Take the inner product of u1 with both sides of the above equation:

c1(u1
• u1) + c2(u2

• u1) + · · ·+ cp(up • u1) = 0 • u1.

Since the set is orthogonal, the left-hand side of the last equation simplifies to c1(u1
• u1).

The right-hand side simplifies to 0. Hence,

c1(u1
• u1) = 0.

But u1
• u1 = ‖u1‖2 is not zero and therefore the only way that c1(u1

• u2) = 0 is if c1 = 0.
Repeat the above steps using u2,u3, . . . ,up and conclude that c2 = 0, c3 = 0, . . . , cp =
0. Therefore, {u1, . . . ,up} is linearly independent. If p = n, then the set {u1, . . . ,up} is
automatically a basis for Rn.

Example 20.13. Is the set {u1,u2,u3} an orthogonal set?

u1 =





1
−2
1



 , u2 =





0
1
2



 , u3 =





−5
−2
1





Solution. Compute

u1
• u2 = (1)(0) + (−2)(1) + (1)(2) = 0

u1
• u3 = (1)(−5) + (−2)(−2) + (1)(1) = 0

u2
• u3 = (0)(−5) + (1)(−2) + (2)(1) = 0

Therefore, {u1,u2,u3} is an orthogonal set. By Theorem 20.12, the set {u1,u2,u3} is linearly
independent. To verify linear independence, we computed that det(

[
u1 u2 u3

]
) = 30,

which is non-zero.
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Lecture 21

Eigenvalues and Eigenvectors

21.1 Eigenvectors and Eigenvalues

An n× n matrix A can be thought of as the linear mapping that takes any arbitrary vector
x ∈ R

n and outputs a new vector Ax. In some cases, the new output vector Ax is simply
a scalar multiple of the input vector x, that is, there exists a scalar λ such that Ax = λx.
This case is so important that we make the following definition.

Definition 21.1: Let A be a n × n matrix and let v be a non-zero vector. If Av = λv
for some scalar λ then we call the vector v an eigenvector of A and we call the scalar λ
an eigenvalue of A corresponding to v.

Hence, an eigenvector v of A is simply scaled by a scalar λ under multiplication by A.
Eigenvectors are by definition nonzero vectors because A0 is clearly a scalar multiple of 0
and then it is not clear what that the corresponding eigenvalue should be.

Example 21.2. Determine if the given vectors v and u are eigenvectors of A? If yes, find
the eigenvalue of A associated to the eigenvector.

A =





4 −1 6
2 1 6
2 −1 8



 , v =





−3
0
1



 , u =





−1
2
1



 .

Solution. Compute

Av =





4 −1 6
2 1 6
2 −1 8









−3
0
1



 =





−6
0
2





= 2





−3
0
1





= 2v
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