Example 20.3. Let $\mathbf{u} = (2, -5, -1)$ and let $\mathbf{v} = (3, 2, -3)$. Compute $\mathbf{u} \cdot \mathbf{v}$, $\mathbf{v} \cdot \mathbf{u}$, $\mathbf{u} \cdot \mathbf{u}$, and $\mathbf{v} \cdot \mathbf{v}$.

Solution. By definition:

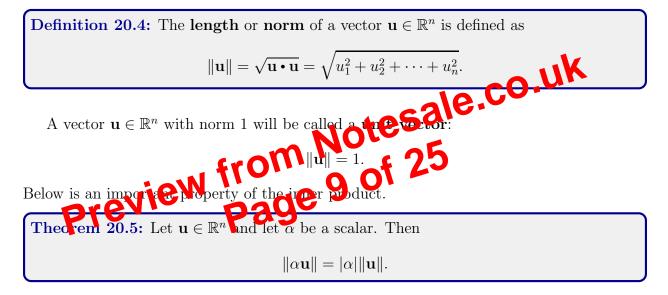
$$\mathbf{u} \cdot \mathbf{v} = (2)(3) + (-5)(2) + (1)(-3) = -1$$

$$\mathbf{v} \cdot \mathbf{u} = (3)(2) + (2)(-5) + (-3)(1) = -1$$

$$\mathbf{u} \cdot \mathbf{u} = (2)(2) + (-5)(-5) + (-1)(-1) = 30$$

$$\mathbf{v} \cdot \mathbf{v} = (3)(3) + (2)(2) + (-3)(-3) = 22.$$

We now define the length or norm of a vector in \mathbb{R}^n .



Proof. We have

$$\|\alpha \mathbf{u}\| = \sqrt{(\alpha \mathbf{u}) \cdot (\alpha \mathbf{u})}$$
$$= \sqrt{\alpha^2 (\mathbf{u} \cdot \mathbf{u})}$$
$$= |\alpha| \sqrt{\mathbf{u} \cdot \mathbf{u}}$$
$$= |\alpha| \|\mathbf{u}\|.$$

By Theorem 20.5, any non-zero vector $\mathbf{u} \in \mathbb{R}^n$ can be scaled to obtain a new unit vector in the same direction as \mathbf{u} . Indeed, suppose that \mathbf{u} is non-zero so that $\|\mathbf{u}\| \neq 0$. Define the new vector

$$\mathbf{v} = \frac{1}{\|\mathbf{u}\|} \mathbf{u}$$

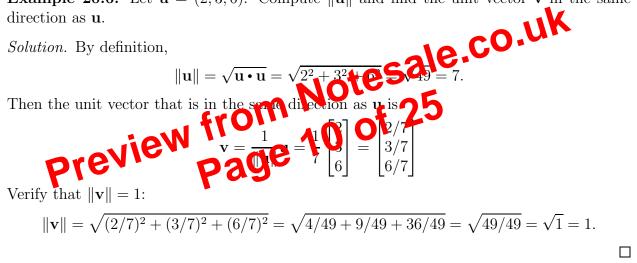
Notice that $\alpha = \frac{1}{\|\mathbf{u}\|}$ is just a scalar and thus \mathbf{v} is a scalar multiple of \mathbf{u} . Then by Theorem 20.5 we have that

$$\|\mathbf{v}\| = \|\alpha \mathbf{u}\| = |\alpha| \cdot \|\mathbf{u}\| = \frac{1}{\|\mathbf{u}\|} \cdot \|\mathbf{u}\| = 1$$

and therefore \mathbf{v} is a unit vector, see Figure 20.1. The process of taking a non-zero vector \mathbf{u} and creating the new vector $\mathbf{v} = \frac{1}{\|\mathbf{u}\|} \mathbf{u}$ is sometimes called **normalization** of \mathbf{u} .

Figure 20.1: Normalizing a non-zero vector.

Example 20.6. Let $\mathbf{u} = (2,3,6)$. Compute $\|\mathbf{u}\|$ and find the unit vector \mathbf{v} in the same



Now that we have the definition of the length of a vector, we can define the notion of distance between two vectors.

Definition 20.7: Let **u** and **v** be vectors in \mathbb{R}^n . The **distance between u and v** is the length of the vector $\mathbf{u} - \mathbf{v}$. We will denote the distance between \mathbf{u} and \mathbf{v} by $d(\mathbf{u}, \mathbf{v})$. In other words,

$$\mathbf{d}(\mathbf{u},\mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

Example 20.8. Find the distance between $\mathbf{u} = \begin{vmatrix} 3 \\ -2 \end{vmatrix}$ and $\mathbf{v} = \begin{vmatrix} 7 \\ -9 \end{vmatrix}$.

Solution. We compute:

d(**u**, **v**) =
$$||\mathbf{u} - \mathbf{v}|| = \sqrt{(3-7)^2 + (-2+9)^2} = \sqrt{65}.$$

Theorem 20.12: Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ be an orthogonal set of non-zero vectors in \mathbb{R}^n . Then the set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is linearly independent. In particular, if p = n then the set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is basis for \mathbb{R}^n .

Solution. Suppose that there are scalars c_1, c_2, \ldots, c_p such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_p\mathbf{u}_p = \mathbf{0}.$$

Take the inner product of \mathbf{u}_1 with both sides of the above equation:

$$c_1(\mathbf{u}_1 \bullet \mathbf{u}_1) + c_2(\mathbf{u}_2 \bullet \mathbf{u}_1) + \dots + c_p(\mathbf{u}_p \bullet \mathbf{u}_1) = \mathbf{0} \bullet \mathbf{u}_1.$$

Since the set is orthogonal, the left-hand side of the last equation simplifies to $c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$. The right-hand side simplifies to **0**. Hence,

$$c_1(\mathbf{u}_1 \bullet \mathbf{u}_1) = \mathbf{0}.$$

But $\mathbf{u}_1 \cdot \mathbf{u}_1 = \|\mathbf{u}_1\|^2$ is not zero and therefore the only way that $c_1(\mathbf{u}_1 \cdot \mathbf{u}_2) = \mathbf{0}\mathbf{u}$ if $c_1 = 0$. Repeat the above steps using $\mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p$ and conclude that $c_2 = \mathbf{0}, c_3 = 0, \dots, c_p = 0$. Therefore, $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is linearly independent. If p = p then the set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is automatically a basis for \mathbb{R}^n .

Example 20.13. Is the set
$$\{\mathbf{u}_1, \mathbf{a}_2, \mathbf{b}_1\}$$
 an orthogonal set?
DIEV

$$\mathbf{u}_1 = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} -5\\ -2\\ 1 \end{bmatrix}$$

Solution. Compute

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = (1)(0) + (-2)(1) + (1)(2) = 0$$

$$\mathbf{u}_1 \cdot \mathbf{u}_3 = (1)(-5) + (-2)(-2) + (1)(1) = 0$$

$$\mathbf{u}_2 \cdot \mathbf{u}_3 = (0)(-5) + (1)(-2) + (2)(1) = 0$$

Therefore, $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set. By Theorem 20.12, the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is linearly independent. To verify linear independence, we computed that $det(\begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}) = 30$, which is non-zero.

Lecture 21

Eigenvalues and Eigenvectors

21.1 Eigenvectors and Eigenvalues

An $n \times n$ matrix **A** can be thought of as the linear mapping that takes any arbitrary vector $\mathbf{x} \in \mathbb{R}^n$ and outputs a new vector $\mathbf{A}\mathbf{x}$. In some cases, the new output vector $\mathbf{A}\mathbf{x}$ is simply a scalar multiple of the input vector \mathbf{x} , that is, there exists a scalar λ such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$. This case is so important that we make the following definition $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}$.

Definition 21.1: Let **A** be a $n \times n$ matrix and let **v** be a pon-zero vector. If $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ for some scalar λ then we call the vector **v** an **eigenvector** $\mathbf{0}$ **A** and we call the scalar λ an **eigenvalue** of **A** corresponding to **v**.

Hence, an eigenvector **v** of **A** is simply scaled by a scalar λ under multiplication by **A**. Eigenvectors are by definition nonzero vectors because **A0** is clearly a scalar multiple of **0** and then it is not clear what that the corresponding eigenvalue should be.

Example 21.2. Determine if the given vectors \mathbf{v} and \mathbf{u} are eigenvectors of \mathbf{A} ? If yes, find the eigenvalue of \mathbf{A} associated to the eigenvector.

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}.$$

Solution. Compute

$$\mathbf{A}\mathbf{v} = \begin{bmatrix} 4 & -1 & 6\\ 2 & 1 & 6\\ 2 & -1 & 8 \end{bmatrix} \begin{bmatrix} -3\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} -6\\ 0\\ 2 \end{bmatrix}$$
$$= 2\begin{bmatrix} -3\\ 0\\ 1 \end{bmatrix}$$
$$= 2\mathbf{v}$$