
Lecture 22

Example 22.10. Find the eigenvalues of A and a basis for each eigenspace:

A =





2 4 3
−4 −6 −3
3 3 1





For each eigenvalue of A, find its algebraic and geometric multiplicity. Does R3 have a basis
of eigenvectors of A?

Solution. One computes

p(λ) = −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2

and therefore the eigenvalues of A are λ1 = 1 and λ2 = −2. The algebraic multiplicity of λ1

is k1 = 1 and that of λ2 is k2 = 2. For λ1 = 1 we compute

A− I =





1 4 3
−4 −7 −3
3 3 0





and then one finds that

v1 =





1
−1
1





is a basis for the λ1-eigenspace. Therefore, the geometric multiplicity of λ1 is g1 =. For
λ2 = −2 we compute

A− λ2I =





4 4 3
−4 −4 −3
3 3 3



 ∼





4 4 3
1 1 1
0 0 0



 ∼





1 1 1
0 0 1
0 0 0





Therefore, since rank(A − λ2I) = 2, the geometric multiplicity of λ2 = −2 is g2 = 1, which
is less than the algebraic multiplicity k2 = 2. An eigenvector corresponding to λ2 = −2 is

v2 =





−1
1
0





Therefore, for the repeated eigenvalue λ2 = −2, we are able to find only one linearly inde-
pendent eigenvector. Therefore, it is not possible to construct a basis for R

3 consisting of
eigenvectors of A.

Hence, in the previous example, there does not exist a basis of R3 of eigenvectors of A
because for one of the eigenvalues (namely λ2) the geometric multiplicity was less than the
algebraic multiplicity:

g2 < d2.

In the next lecture, we will elaborate on this situation further.

Example 22.11. Find the algebraic and geometric multiplicities of each eigenvalue of the
matrix

A =





−7 1 0
0 −7 1
0 0 −7



 .

175

Preview from Notesale.co.uk

Page 5 of 31



Diagonalization

(a) Find the characteristic polynomial and the eigenvalues of A.
(b) Find the geometric and algebraic multiplicity of each eigenvalue of A.

We now introduce a very special type of a triangular matrix, namely, a diagonal matrix.

Definition 23.3: A matrix D whose off-diagonal entries are all zero is called a diagonal
matrix.

For example, here is 3× 3 diagonal matrix

D =





3 0 0
0 −5 0
0 0 −8



 .

and here is a 5× 5 diagonal matrix

D =









6 0 0 0 0
0 0 0 0 0
0 0 −7

2
0 0

0 0 0 2 0
0 0 0 0 − 1

11









.

A diagonal matrix is clearly also a triangular matrix and therefore the eigenvalues of a
diagonal matrix D are simply the diagonal entries of D. Moreover, the powers of a diagonal

matrix are easy to compute. For example, if D =

[
λ1 0
0 λ2

]

then

D2 =

[
λ1 0
0 λ2

] [
λ1 0
0 λ2

]

=

[
λ2
1 0
0 λ2

2

]

and similarly for any integer k = 1, 2, 3, . . ., we have that

Dk =

[
λk
1 0
0 λk

2

]

.

23.2 Diagonalization

Recall that two matrices A and B are said to be similar if there exists an invertible matrix
P such that

A = PBP−1.

A very simple type of matrix is a diagonal matrix since many computations with diagonal
matrices are trivial. The problem of diagonalization is thus concerned with answering the
question of whether a given matrix is similar to a diagonal matrix. Below is the formal
definition.
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Lecture 24

all matrices are diagonalizable. As it turns out, any symmetric A is diagonalizable and
moreover (and perhaps more importantly) there exists an orthogonal eigenvector matrix P
that diagonalizes A. The full statement is below.

Theorem 24.3: If A is a symmetric matrix then A is diagonalizable. In fact, there is an
orthonormal basis of Rn of eigenvectors {v1,v2, . . . ,vn} of A. In other words, the matrix
P = [v1 v2 · · · vn] is orthogonal, P

TP = I, and A = PDPT .

The proof of the theorem is not hard but we will omit it. The punchline of Theorem 24.3
is that, for the case of a symmetric matrix, we will never encounter the situation where
the geometric multiplicity is strictly less than the algebraic multiplicity. Moreover, we are
guaranteed to find an orthogonal matrix that diagonalizes a given symmetric matrix.

Example 24.4. Find an orthogonal matrix P that diagonalizes the symmetric matrix

A =





1 0 −1
0 1 1

−1 1 2



 .

Solution. The characteristic polynomial of A is

p(λ) = det(A− λI) = λ3 − 4λ2 + 3λ = λ(λ− 1)(λ− 3)

The eigenvalues of A are λ1 = 0, λ2 = 1 and λ3 = 3. Eigenvectors of A associated to
λ1, λ2, λ3 are

u1 =





1
−1
1



 , u2 =





1
1
0



 , u3 =





−1
1
2



 .

As expected by Theorem 24.2, the eigenvectors u1,u2,u3 form an orthogonal set:

uT
1 u2 = 0, uT

1 u3 = 0, uT
2 u3 = 0.

To find an orthogonal matrix P that diagonalizes A we must normalize the eigenvectors
u1,u2,u3 to obtain an orthonormal basis {v1,v2,v3}. To that end, first compute uT

1 u1 = 3,
uT
2 u2 = 2, and uT

3 u3 = 6. Then let v1 =
1√
3
u1, let v2 =

1√
2
u2, and let v3 =

1√
6
u3. Therefore,

an orthogonal matrix that diagonalizes A is

P =
[
v1 v2 v3

]
=








1√
3

1√
2

− 1√
6

− 1√
3

1√
2

1√
6

1√
3

0 2√
6








You can easily verify that PTP = I, and that

A = P





0 0 0
0 1 0
0 0 3



PT
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The PageRank Algortihm

In both models, the web is defined as a directed graph, where the nodes represent
webpages and the directed arcs represent hyperlinks, see Figure 25.1.

1

32

4

Figure 25.1: A tiny web represented as a directed graph.

25.2 A Description of the PageRank Algorithm

In the PageRank algorithm, each inlink is viewed as a recommendation (or vote). In general,
pages with many inlinks are more important than pages with few inlinks. However, the
quality of the inlink (vote) is important. The vote of each page should be divided by the
total number of recommendations made by the page. The PageRank of page i, denoted xi,
is the sum of all the weighted PageRanks of all the pages pointing to i:

xi =
∑

j→i

xj

|Nj|

where

(1) Nj is the number of outlinks from page j

(2) j → i means page j links to page i

Example 25.1. Find the PageRank of each page for the network in Figure 25.1.

From the previous example, we see that the PageRank of each page can be found by
solving an eigenvalue/eigenvector problem. However, when dealing with large networks such
as the internet, the size of the problem is in the billions (8.1 billion in 2006) and directly
solving the equations is not possible. Instead, an iterative method called the power method
is used. One starts with an initial guess, say x0 = (1

4
, 1
4
, 1

4
, 1

4
). Then one updates the guess

by computing
x1 = Hx0.

In other words, we have a discrete dynamical system

xk+1 = Hxk.

A natural question is under what conditions will the the limiting value of the sequence

lim
k→∞

xk = lim
k→∞

(Hkx0) = q
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Lecture 25

converge to an equilibrium of H? Also, if lim
k→∞

xk exists, will it be a positive vector? And

lastly, can x0 6= 0 be chosen arbitrarily? To see what situations may occur, consider the
network displayed in Figure 25.2. Starting with x0 = (1

5
, . . . , 1

5
) we obtain that for k ≥ 39,

the vectors xk = Hkx0 cycle between (0, 0, 0, 0.28, 0.40) and (0, 0, 0, 0.40, 0.28). Therefore,
the sequence x0,x1,x2, . . . does not converge. The reason for this is that nodes 4 and 5 form
a cycle.

1

3

4 5

2 H =















0
1
3

0 0 0

0 0
1
2
0 0

0
1
3

0 0 0

0
1
3

1
2 0 1

0 0 0 1 0















Figure 25.2: Cycles present in the network

Now consider the network displayed in Figure 25.3. If we remove the cycle we are still
left with a dangling node, namely node 1 (e.g. pdf file, image file). Starting with x0 =
(1
5
, . . . , 1

5
) results in

lim
k→∞

xk = 0.

Therefore, in this case the sequence x0,x1,x2, . . . converges to a non-positive vector, which
for the purposes of ranking pages would be an undesirable situation.

1

3

4 5

2 H =















0
1
3
0 0 0

0 0
1
2

1
2
0

0
1
3
0 0 0

0
1
3

1
2 0 1

0 0 0
1
2 0















Figure 25.3: Dangling node present in the network

To avoid the presence of dangling nodes and cycles, Brin and Page used the notion of
a random surfer to adjust H. To deal with a dangling node, Brin and Page replaced
the associated zero-column with the vector 1

n
1 = ( 1

n
, 1

n
, . . . , 1

n
). The justification for this

adjustment is that if a random surfer reaches a dangling node, the surfer will “teleport” to
any page in the web with equal probability. The new updated hyperlink matrix H∗ may still
not have the desired properties. To deal with cycles, a surfer may abandon the hyperlink
structure of the web by ocassionally moving to a random page by typing its address in the
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