<u>ASSIGNMENT – 1(BASIC) ON COMPLEX NUMBER</u> SECTION – A (Onemark Questions)

- 1. Multiply $\sqrt{2} + i$ in to its conjugate.
- 2. Find real x and y, if (x iy) (3 + 5i) is the conjugate of -6 24i
- 3. Find the multiplication inverse of $\sqrt{3}$ i
- 4. The standard form of $(1 i)^3$ is
- 5. $1 + i^5 + i^{10} i^{15}$ is ------
- 6. The modulus of $(1-2i)^{-3}$ is ...
- 7. The the principal argument of the complex number -i is
- 8. Square root of 'i' is (a) $\frac{1}{\sqrt{2}}$ (b) $-\frac{1}{\sqrt{2}}$ (c) $\frac{1+i}{\sqrt{2}}$ (d) $\pm \frac{1+i}{\sqrt{2}}$ SECTION – B (Two marks Questions) 9. Prove that $\left(\frac{2+3i}{3+4i}\right)\left(\frac{2-3i}{3-4i}\right)$ is purely real 10. If $a + ib = \frac{c+i}{c-i}$, prove that $a^2 + b^2 = 1$ 11. What is the value of $\frac{i^{4n+1} - i^{4n-1}}{2}$ **10. If a^2 10. If a^2 + b^2 = 1** 12. Express $\left(\frac{1}{1-4i}-\frac{2}{1-i}\right)\left(\frac{30}{5+i}\right)$ in to a+ib for **3** SED 13 QC (Four marks Questions) 13 Find the modulus and argument of the $\frac{1+2i}{1-3i}$ complex numbers and convert them in to polar form . 14. Write the real value for which $\frac{1-i\sin\alpha}{1+2i\sin\alpha}$ is purely real 15. If $a^2 + ib = \frac{c+i}{c-i}$ where a, b, c are real, prove that $a^2 + b^2 = 1$ and $\frac{b}{a} = \frac{2c}{c^2-1}$ 16. Find the values of x and y if $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$