11. Atomic Theories and Models

- **Dalton's Atomic Theory**:

- Atoms are indivisible particles (now known to contain subatomic particles).

- Atoms of the same element are identical.

- **Thomson's Plum Pudding Model**: Atoms consist of electrons scattered in a positive charge "pudding."

- **Rutherford's Nuclear Model**: Discovered the nucleus through the gold foil experiment.

- **Bohr Model**: Electrons orbit the nucleus in discrete energy levels.

- **Quantum Mechanical Model**: Electrons exist in orbitals, regions of space where the probability of finding an electron is high.

12. Chemical Equilibrium

- **Dynamic Equilibrium**: Rate of forward reaction equals the rate of reverse reaction.

- **Equilibrium Constant (K)**:
- \(K_c = \frac{[products]^{\text{coefficients}}}{[reactants]^{\text{coefficients}}} \)
- **Le Chatelier's Principle**:

- A system at equilibrium will adjust to counteract changes (e.g., concernation, pressure, ### **13. Solutions and Subbility** - **Solutions* Promogeneous mixing of older and solvent. - **Solutions* Promogeneous mixing of older and solvent. - **Solutions* The maximum an ount of solute that can discrite temperature. - **Concentration Units**: - **Molarity (**)

- **Scrubility ... The maximum an ount of solute that can dissolve in a solvent at a given

- **Molarity (M)**: \(M = \frac{\text{moles of solute}}{\text{liters of solution}} \).

- **Molality (m)**: \(m = \frac{\text{moles of solute}}{\text{kilograms of solvent}} \).

- **Colligative Properties**: Depend on solute particle number, not type (e.g., boiling point elevation, freezing point depression).

14. Redox Reactions

- **Oxidation**: Loss of electrons.

- **Reduction**: Gain of electrons.
- **Oxidizing Agent**: Causes oxidation (gets reduced).
- **Reducing Agent**: Causes reduction (gets oxidized).
- Use **oxidation states** to track electron transfer.