
Each character in the array occupies one byte of memory and the last character is always ‘\0’.

‘\0’ is called null character. A string not terminated by a ‘\0’ is not really a string, but merely

a collection of characters.

/* Program to demonstrate printing of a string */

main()

{

char name[] = "Klinsman" ;

int i = 0 ;

while (i <= 7)

{

printf ("%c", name[i]) ;

i++ ;

}

And here is the output...

Klinsman

Can we write the while loop without using the final value 7? We can; because we know that each

character array always ends with a ‘\0’. Following program illustrates this.

main()

{

char name[] = "Klinsman" ;

int i = 0 ;

while (name[i] != `\0')

{

printf ("%c", name[i]) ;

i++ ;

}

}

And here is the output...

Klinsman

Here is another version of the same program; this one uses a pointer to access the array elements.

main()

{

char name[] = "Klinsman" ;

char *ptr ;

ptr = name ; /* store base address of string */

while (*ptr != `\0')

{

printf ("%c", *ptr) ;

ptr++ ;

}

}

The %s used in printf() is a format specification for printing out a string. The same

specification can be used to receive a string from the keyboard, as shown below.

main()

Preview from Notesale.co.uk

Page 9 of 17

target string = Sayonara

Note that having copied the entire source string into the target string, it is necessary to place

a ‘\0’ into the target string, to mark its end.

 strcat()

This function concatenates the source string at the end of the target string. For example,

“Bombay” and “Nagpur” on concatenation would result into a string “BombayNagpur”.

Here is an example of strcat() at work.

main()

{

char source[] = "Folks!" ;

char target[30] = "Hello" ;

strcat (target, source) ;

printf ("\nsource string = %s", source) ;

printf ("\ntarget string = %s", target) ;

}

And here is the output...

source string = Folks!

target string = HelloFolks!

 strcmp()

This is a function which compares two strings to find out whether they are same or different.

The two strings are compared character by character until there is a mismatch or end of one

of the strings is reached, whichever occurs first. If the two strings are identical, strcmp()

returns a value zero. If they’re not, it returns the numeric difference between the ASCII

values of the first non-matching pairs of characters. Here is a program which puts strcmp()

in action.

main()

{

char string1[] = "Jerry" ;

char string2[] = "Ferry" ;

int i, j, k ;

i = strcmp (string1, "Jerry") ;

j = strcmp (string1, string2) ;

k = strcmp (string1, "Jerry boy") ;

printf ("\n%d %d %d", i, j, k) ;

}

And here is the output...

0 4 -32

In the first call to strcmp(), the two strings are identical—“Jerry” and “Jerry”—and the

value returned by strcmp() is zero. In the second call, the first character of “Jerry” doesn't

match with the first character of “Ferry” and the result is 4, which is the numeric difference

between ASCII value of ‘J’ and ASCII value of ‘F’. In the third call to strcmp() “Jerry”

doesn’t match with “Jerry boy”, because the null character at the end of “Jerry” doesn’t

match the blank in “Jerry boy”. The value returned is -32, which is the value of null

character minus the ASCII value of space, i.e., ‘\0’ minus ‘ ’, which is equal to -32.

Preview from Notesale.co.uk

Page 14 of 17

