Each character in the array occupies one byte of memory and the last character is always \0’.
‘\0’ is called null character. A string not terminated by a ‘\0’ is not really a string, but merely
a collection of characters.

/* Program to demonstrate printing of a string */

main()

{

char name[] = "Klinsman" ;

inti=0;

while (i<=7)

{

printf ("%c", name[i]) ;

I++

}

And here is the output...

Klinsman

Can we write the while loop without using the final value 7? We can; because we know that each
character array always ends with a ‘\0’. Following program illustrates this.

main()

{ \'$

char name[] = "Klinsman" ; u
inti=0;

while (name[i] = "\0")
{ WO
printf ("%c", name[i]);\l\I _‘(Om

i++;

) \J\E e
,}A:}d hgigtgoutput... P ag
Klinsman

Here is another version of the same program; this one uses a pointer to access the array elements.
main()

char name[] = "Klinsman" ;

char *ptr ;

ptr = name ; /* store base address of string */
while (*ptr '="\0")

{

printf ("%c", *ptr) ;

ptr++ ;

}

}

The %s used in printf() is a format specification for printing out a string. The same
specification can be used to receive a string from the keyboard, as shown below.
main()

target string = Sayonara
Note that having copied the entire source string into the target string, it is necessary to place
a ‘\0’ into the target string, to mark its end.

» strcat()

This function concatenates the source string at the end of the target string. For example,
“Bombay” and ‘“Nagpur” on concatenation would result into a string “BombayNagpur”.
Here is an example of strcat() at work.

main()

{

char source[] = "Folks!" ;

char target[30] = "Hello" ;

strcat (target, source) ;

printf ("\nsource string = %s", source) ;

printf ("\ntarget string = %s", target) ;

}

And here is the output...

source string = Folks!

target string = HelloFolks! O u\k
AT

» strcmp()

This is a function which compares two str| ether they are same or different.
The two strings are compared char er unti e Is @ mismatch or end of one
of the strings is reached g@ﬁ;‘curs first. @Q trings are identical, strcmp()
returns a Value re not, it r erlc difference between the ASCII
values é\, atchln fc acters Here is a program which puts strcmp()
in?iﬁl. é@

main()

{

char stringl[] = "Jerry";

char string2[] = "Ferry" ;

inti,], k;

I = stremp (stringl, "Jerry") ;

j = stremp (stringl, string2) ;

k = strcmp (stringl, "Jerry boy") ;

printf ("\n%d %d %d", i, j, k) ;

¥

And here is the output...

04-32

In the first call to strcemp(), the two strings are identical—“Jerry” and “Jerry”—and the
value returned by strcmp() is zero. In the second call, the first character of “Jerry” doesn't
match with the first character of “Ferry” and the result is 4, which is the numeric difference
between ASCII value of ‘J° and ASCII value of ‘F’. In the third call to strcmp() “Jerry”
doesn’t match with “Jerry boy”, because the null character at the end of “Jerry” doesn’t
match the blank in “Jerry boy”. The value returned is -32, which is the value of null
character minus the ASCII value of space, i.e., ‘\O” minus ° °, which is equal to -32.

