Tuesday 11 June 2024 – Morning GCSE (9-1) Combined Science A (Gateway Science)

J250/10 Chemistry (Higher Tier)

Time allowed: 1 hour 10 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet for GCSE (9-1) Combined Science A (Chemistry) (inside this document)

You can use:

- · a scientific or graphical calculator
- an HB pencil

Please write clearly in black ink. Do not write in the barcodes.

Centre number

Candidate number

Circle (S)

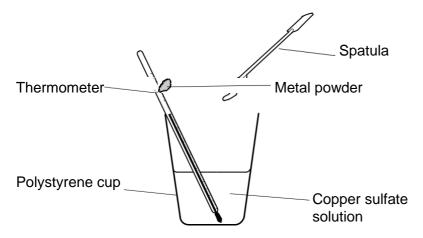
Last name

Candidate number

Coulk

- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- · Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION


- The total mark for this paper is **60**.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 20 pages.

ADVICE

Read each question carefully before you start your answer.

14 A student investigates the reactivity of four metals.

The diagram shows the equipment they use.

This is their method:

- Measure 25 cm³ of copper sulfate solution into a polystyrene cup.
- Measure and record the initial temperature of the copper sulfate solution.
- Add two spatulas of a powdered metal and stir the mixture.
- Record the highest temperature reached.

 Add two spatulas of a powdered metal and stir the mixture. 							
Record the highest temperature reached.							
 Record the highest temperature reached. The table shows some of the student's results. 							
Metal	Initial temperature (C)	Highest Tempfrat	Temperature change (°C)				
Tin pre	VIC DAD	34.1	17.8				
Zinc	700	43.6	27.5				
Iron		29.7	13.6				
Magnesium		47.2	31.0				

(a) Calculate the **lowest** initial temperature of the copper sulfate solution.

Lowest initial temperature =°C [1]

(c)	It is thought that an increase in carbon dioxide in the atmosphere is causing global warming.
(i)	Describe how an increase in carbon dioxide in the atmosphere is causing global warming.
	[2]
(ii)	Describe one way that the emissions of carbon dioxide by human activity can be reduced.
	[1]

Preview from Notesale.co.uk
Preview from 16 of 44
Page 16 of 44

Higher

GCSE

Combined Science Chemistry A Gateway Science

J250/10: Paper 10 (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for June 2024 Notes ale.co.uk

Preview from 24 of 44

Preview page 24

11. Annotations available in RM Assessor

Annotation	Meaning
	Meaning Correct response Incorrect response On issign mark
×	Incorrect responds
EDPreview from page	On ission mark
BOD WIEW	Benefit of dealbit given
con bless baa	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning Alternative and accordable answers for the same marking point
I	
fron .	Separates marking Aoi/is
DO-NOTATION	Answe s which are not worthy of credit
IGNORE PAS	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

QuestionAnswer		Marks	AO element	Guidance		
(e)	(i) There was an issue with this question and we have awarded the mark to all candid	affected ates for t	candidate	es' ability	to asswer	it. To make sure all candidates were treated fairly,
	we have awarded the mark to all candid Aluminium oxide / Al2O3 loses oxygen NOT Alife Was awarded the mark to all candid Aluminium oxide / Al2O3 loses oxygen NOT Alife Was awarded the mark to all candid	of ^A	44 44	1	3.1b	ALLOW <u>aluminium ions</u> / <u>A/3+</u> gain electrons IGNORE oxygen has been separated from aluminium DO NOT ALLOW aluminium loses oxygen / gains electrons
	Aluminium oxide is melted at a high temperature. The electrolysis produces impure aluminium. The electrolysis uses large amounts of electricity.	True ✓	False ✓	2	2 x 1.2	All 3 correct = 2 marks Any 1 or 2 correct = 1 mark
	(iii) Aluminium is more reactive (than carbon)	/ ORA	√	1	1.2	ALLOW <u>aluminium</u> is higher in the reactivity serie (than carbon) IGNORE unless a comparison of reactivity is give DO NOT ALLOW aluminium oxide/it/oxygen is more reactive than carbon IGNORE aluminium is very reactive