- There are four other C_2 axes in the place of the molecule.
- The C_2 ' and C_2 " axes of a planar MX₄ molecule.
- As these twofold axes are not collinear with the principal C_4 rotational axis they are distinguished by adding prime (') and double prime (') to their symbols.
- Only two notations are needed of the four axes, because both $C_2^{'}$ axes are said to belong to the same **class**, while the two $C_2^{'}$ axes belong to a separate class.

i.e., both Q axes are geonetrically equivalent to each other and distinct from $C_2^{''}$.

 In listing the complete set of symmetry operations for a molecule, operations of the same class are designated by a single notation preceded by a coefficient indicating the number of equivalent operations comprising the class.

e.g. for the square planar structure here discussed, of D_{4h} symmetry, the rotational operations grouped by class are

```
2C_4 (C_4 and C_4^3), C_2 (collinear with C_4)
2C_2', and 2C_2''.
```


The C_2 ' and C_2 " axes of a planar MX₄ molecule.

General Relationships for C_n

- Every n-fold rotational axis has n-1 associated operations (excluding $C_n^n = E$).
- Remember, the rotational operation C_n^m is preferably identified as the simpler $C_{n/m}$ operation where m/n is an integer value.

Horizontal, Vertical, and Dihedral Mirror Planes

- A σ_h plane is defined as perpendicular
- If no principal axis of rotation exists, σ_{s} are σ_{h} is defined as the plane of the tore one.
- defined go B to 46 σ_{ν} and σ_{ν} planes a control principal oxis of otation and to be perpendicular to a σ_h plane.
- When both σ_{v} and σ_{d} planes occur in the same system, the distinction between the types is made by defining σ_{ν} to contain the greater number of atoms or to contain a principal axis of a reference Cartesian coordinate system (x or y axis).
- Any σ_d planes typically will contain bond angle bisectors.
- The five mirror planes of a square planar molecule MX₄ are grouped into three classes (σ_h , $2\sigma_v$, $2\sigma_d$).

Defining the Coordinate System (contd.)

For planar molecules, if the z axis as defined above is perpendicular to the molecular 3.

If the z axis lies in the plane of the molecule, then the x axis stands perpendicular to the plane.

Defining the Coordinate System (contd.)

4. For non-planar molecules, once the *z* axis has been vefined, the *x* axis is usually chosen so that the *xz* plane contains as many aton S so possible. If there are two or more such planes containing identical sets of Stoms, any one may be taken as the *xz* plane.

Where a decision about the orientation of the x axis cannot be made on this basis, the distinction between x and y is usually not important or is not generally fixed by convention.

- We will now consider the complete set of symmetry operations for a particular molecule • and determine all the binary combinations of the symmetry operations it possesses.
- •

The complete set of symmetry operations are E, C_2 , σ_v , σ_v' •

- To the rotations of the corresponding C_n groups the family of C_{nv} groups adds n vertical mirror • planes, which intersect at the C_n axis.
- The point group $C_{\infty y}$, which has a infinite-fold C_{∞} rotation variation for an important member of this ۰ family. It is the point group of all non-centrosymmetric linear molecules. e.g., H-Cl, C=O.

- generate any of the C_{nh} groups, we need only add a horizontal mirror plane to the series of rotations of the appropriate cyclic C_n group. To generate any thit
- Since $C_n \sigma_h = S_n$ and $C_2 \sigma_h = S_2 = i$, these groups also have *n*-fold improper axes when n > 2, and they are centrosymmetric when *n* is even.
- The S_{2n} series are not common.

