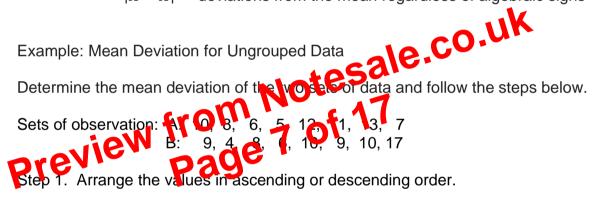
Interpretation (for QD): Comparing the results obtained from the two sets of values, we can say that the values in set B are less dispersed around the median as compared to the values in set A.

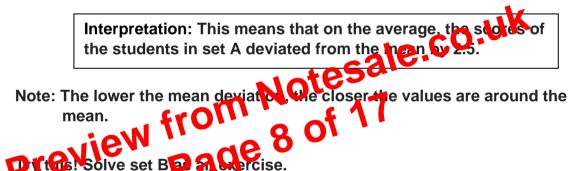

3. The Mean Deviation or the Average Deviation

$$MD = rac{\Sigma |X - \overline{X}|}{n}$$

Formula 15

where: MD = mean deviation

- X = individual value
- \overline{X} = mean of data
- n = total number of items or observations
- $|X \overline{X}|$ = deviations from the mean regardless of algebraic signs



- Step 2. Find the sum of the values.
- Step 3. Compute the value of the mean.
- Step 4. Find the value of the deviation of each score from the mean.
- Step 5. Find the **absolute value** of each deviation obtained in Step 4.
- Step 6. Find the sum of the absolute values in Step 5.
- Step 7. Substitute the values in the formula and solve.

X	$X - \overline{X}$	$ X - \overline{X} $
(<mark>Step 1</mark>)	(<mark>Step 4</mark>)	(<mark>Step 5</mark>)
5	5 - <mark>9</mark> = - 4	4
6	6 - <mark>9</mark> = -3	3
7	7 - <mark>9</mark> = -2	2
8	8 - <mark>9</mark> = -1	1
10	10 - <mark>9</mark> = 1	1
11	11 - <mark>9</mark> = 2	2
12	12 - <mark>9</mark> = 3	3
13	13 - <mark>9</mark> = 4	4
$\Sigma X = 72$		$\Sigma X-\bar{X} =\frac{20}{20}$
(<mark>Step 2</mark>)		(<mark>Step 6</mark>)

(Step 3)
$$\overline{X} = \frac{\Sigma X}{n} \frac{10+8+6+5+12+11+13+7}{8} = \frac{72}{8} = 9$$

(Step 7)
$$MD = \frac{\Sigma|X-\overline{X}|}{n} = \frac{20}{8} = 2.5$$

4. The Variance

By Deviation Method (Long Method):

For Variance of a Sample Data:

$$\mathbf{S}^2 = \frac{\Sigma (X - \overline{X})^2}{n - 1}$$

Formula 16a

By Raw Score Method (Short Method):

For Variance of a Sample Data:

$$\mathbf{S}^2 = \frac{\Sigma x^2 - \frac{(\Sigma x)^2}{n}}{n-1}$$

 $s^2 = variance$

where:

Formula 16b

where:

x = individual value

 \overline{X} = mean

- n = total number of items or observations observations
- x = individual value x^2 = squared of individual value
- n = total number of items or