5. Membership Operators:

in : Checks if a value is present in a sequence (e. g‘é\ﬁ tuple, string)
not in : Checks if a value is not present |r\@s@|

6. Identity Operators:
is : Checks if two obje eVﬂ\Qsa ect (memory location)
iS not : Check%wg JeCtSﬁ% |®t ame object

PythoriR¥§s veral b@%ﬂ&

Numeric Types:

int: Represents integers (whole numbers), e.g., 1, 2, -10.
float: Represents floating-point numbers (numbers with decimal points), e.g., 3.14,-2.7.

complex: Represents complex numbers, e.g., 2 + 3.

Type of i N<gleae\esfta’temen’t

gro™ ;= of 60
?‘ Ydr‘@/eral Vﬁ%ﬂ eAQ‘Ise stgment

dition:

code to execute if the condition is true
2. if-else statement:
If condition:

code to execute if the condition is true
else:

code to execute if the condition is false
3. if-elif-else statement:
If condition1:

code to execute if condition1 is true
elif condition2:

code to execute if condition2 is true
else:

code to execute if none of the above conditions are true

0.V¥

Explanatlggg sa\e"

(Om

&@ment er than 5.

ndltlon is er |f statement checks if x is greater than 8.
the second condition¥s also true, the code inside the inner if block executes.
If the second condition is false, the code inside the inner else block executes.

Another example with elif:
Num =15

if num > 0:
print(“Number is positive”)
if num % 2 ==
print(“Number is even”)
else:
print(“Number is odd”)
else:

print(“Number is not positive”)

Example

X =10 CO-\)\L
eSAe
if x > 15: NO 0
e O
r| (J(\@\gh*le
fx>5

print(“x is greater than 5 but less than or equal to 15”)
else:
print(“x is less than or equal to 5”)
Output
X is greater than 5 but less than or equal to 15

uk
Key pointsqes e

7o)
60

W fro
%ﬂ(@ﬁ’n\ ave %‘ statements following an if statement.
ython will evaluate the conditions in order, and execute the code block associated with the

first true condition.
If none of the conditions are true, the else block will execute, if present.
If you only need to check one condition, you can use a simple if statement.

If you need to check multiple conditions, and execute different code for each, elif is a powerful
tool.

lterable:

The object you want to loop through.
ltem:

A variable that takes on the value of each element in the sequence during the loop.
Code Block:

The indented code that is executed for each item in the sequence.

Nested f Ot) statement
ttOm 0"6

?f@ﬂc}n an tg(gg Ioop is a loop that is placed inside another loop. The outer loop iterates
ver a sequence, and for each iteration, the inner loop executes completely.

Syntex:
For outer_variable in outer_sequence:
Code to execute in the outer loop
for inner_variable in inner_sequence:
Code to execute in the inner loop
Example
Foriinrange(1, 4): # Outer loop
forjinrange(1, 4): # Inner loop
print(i, j)

Explanation:

def: The keyword used to define a functio \)\4

Function_name: A unique name to,ident he function.

Parameters (optional): \Blgb that the function can accept.

Docstring op}i& I()'Dt\ rlefg} ion of the function’s purpose.

COde}f\ ed: THRBolly of the function containing the instructions to perform the task.
optlor@ eyword used to return a value from the function.

Example:

Def greet(name):

“unn nnn

This function greets the user.

print(“Hello,”, name)

greet(“Alice”) # Output: Hello, Alice

Built-in Polymorphism:
Many built-in functions and operators in Python exhibit polymorphic behavior. For example, the len() function works on strings, lists, tuples, and other sequence types.
Example of polymorphism using method overriding:

Class Animal: u\(

def speak(self):

e.
pass tesa\
class Dog(Animal): _‘(Om

def speak(selfy \N
Predi€" oa0e

class Cat(Animal):
def speak(self):

return “Meow!”

def animal_sound(animal):

print(animal.speak())

dog = Dog()
cat = Cat()

animal_sound(dog) # Output: Woof!

Animal_sound(cat) # Output: Meow!

Thank you

