11. What is the major product formed by HI on

(1)
$$CH_3 \xrightarrow[]{} CH_3 \\ CH_3 \xrightarrow[]{} C \xrightarrow[]{} CH \xrightarrow[]{} CH_2I \\ I \\ CH_3 H \\ H$$

(2)
$$CH_{3} - CH_{3} - CH_{3}$$

- 12. Which of the following reagent is used for the

 - (2) Coper whigh temperature
 - (3) Molybdenum oxide
 - (4) Potassium permanganate
- Given below are two statements : 13. Statement I : Colourless cupric metaborate is reduced to cuprous metaborate in a luminous flame

Statement II : Cuprous metaborate is obtained by heating boric anhydride and copper sulphate in a non-luminous flame.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are true

- Out of the following, which type of interaction is 14. responsible for the stabilisation of α -helix structure of proteins ?
 - (1) Ionic bonding
 - (2) Hydrogen bonding
 - (3) Covalent bonding
 - (4) vander Waals forces
- 15. Match List I with List II.

List I	List II
(Monomer Unit)	(Polymer)
(a) Caprolactum	(i) Natural rubber
(b) 2-Chloro-1,3-butadiene (ii) Buna-N	
(c) Isoperene	(iii) Nylon 6
(d) Acrylonitrile	(iv) Neoprene
Choose the correct answer from the options given	
below :	JUN
$(1) (a) \rightarrow (i1) (a) \rightarrow (in)$), (c) \rightarrow (ii), (d) \rightarrow (i)
$(1) a \rightarrow (ii), (b) \rightarrow (i),$	$(c) \rightarrow (iv), (d) \rightarrow (iii)$
(3) (a) \rightarrow 0ii), (b) \rightarrow (iv	i), (c) \rightarrow (i), (d) \rightarrow (ii)
$O^{(a)} \rightarrow (i), (b) \rightarrow (ii),$	$(c) \rightarrow (iii), (d) \rightarrow (iv)$

- 16. The gas released during anaerobic degradation of vegetation may lead to :
 - (1) Ozone hole
 - (2) Acid rain
 - (3) Corrosion of metals
 - (4) Global warming and cancer
- The major components in "Gun Metal" are : 17. (1) Cu, Zn and Ni (2) Cu, Sn and Zn (3) Al, Cu, Mg and Mn (4) Cu, Ni and Fe
- The electrode potential of M^{2+} / M of 3d-series 18. elements shows positive value of :
 - (1) Zn (2) Fe (3) Co (4) Cu

- 6. For the reaction $A_{(g)} \rightarrow (B)_{(g)}$, the value of the equilibrium constant at 300 K and 1 atm is equal to 100.0. The value of $\Delta_r G$ for the reaction at 300 K and 1 atm in J mol⁻¹ is xR, where x is _______ (Rounded of to the nearest integer) (R = 8.31 J mol⁻¹ K⁻¹ and ln 10 = 2.3)
- 7. A proton and a Li^{3+} nucleus are accelerated by the same potential. If λ_{Li} and λ_{P} denote the de Broglie wavelengths of Li^{3+} and proton respectively, then

the value of $\frac{\lambda_{\rm Li}}{\lambda_{\rm p}}\,$ is $x\,\times\,10^{-1}.$ The value of x is

(Rounded off to the nearest integer) (Mass of $Li^{3+} = 8.3$ mass of proton) The stepwise formation of $[Cu(NH_3)_4]^{2+}$ is given below

8.

 $\begin{array}{c} Cu^{2+} + NH_3 \xleftarrow{K_1} [Cu(NH_3)]^{2+} \\ [Cu(NH_3)]^{2+} + NH_3 \xleftarrow{K_2} [Cu(NH_3)_2]^{2+} \\ [Cu(NH_3)_2]^{2+} + NH_3 \xleftarrow{K_3} [Cu(NH_3)_3]^{2+} \\ [Cu(NH_3)_3]^{2+} + NH_3 \xleftarrow{K_4} [Cu(NH_3)_4]^{2+} \\ The value of stability constants K_1, K_2, K_3 and K_4 \\ are 10^4, 1.58 \times 10^3, 5 \times 10^2 and 10^2 respectively. \\ The overall equilibrium constants for dissociation \\ of [Cu(NH_3)_4]^{2+} is x \times 10^{-12}. \\ The value of x is \\ _ _ _ . (Rounded off to the nearest integer) \\ \end{array}$

- 9. The coordination number of an atom in a body-centered cubic structure is _____.
 [Assume that the lattice is made up of atoms.]
- 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process which has a 'k' value of $3.3 \times$ 10. Gaseous cyclobutere is merizes to butadiene in a first ode process