- Nuclear charge unchanged
- Nuclear attraction decrease

Melting Point

- Giant Metallic Structure Strong metallic bond between delocalised electrons and positive ions
- Strength dependent on: ionic radius size (strong: decrease) and net charge of positive ions (strong: increase)
- Giant Covalent Structure strong covalent bond between atoms
- Simple Molecular Structure: weak intermolecular force between atoms / molecules
- Strength depends on: relative molecular mass (strong: increase)

Exceptions (Ionisation Energy):

- are giant metallic structure
 Number of inner company
 lonic radius
- Ionic radius in the ases
- Spens hor giant metalioned decreases
- Melting point decreases down the group

Group 7 (Halogens)

- are simple molecular structure
- relative molecular mass increases
- Intermolecular force between atoms/ molecules increase
- Melting point increase down the group

Magnesium to Aluminimum

	Electron	Electron
	Configuration	Configuration
Aluminimum	[Ne]3s[2]3p[1]	[1/1] [1][][]

- Valence electron is in the 3p sub-shell
- 3p sub-shell is at a higher energy level than 3s sub-shell