...

(iii) If (x) is increasing function on (a , b), then tangent at every point on the curve y = f(x) makes an acute angle θ with the positive direction of x-axis.

$$\tan \theta > 0 \Rightarrow \frac{dy}{dx} > 0 \text{ or } f'(x) > 0 \text{ for all } x \in (a, b).$$

(iv) Let f be a differentiable real function defined on an open interval (a, b).

- If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b).
- If $f'(x) \le 0$ for all $x \in (a, b)$, then f(x) is decreasing on (a, b).

(v) Let f be a function defined on (a, b).

- If f '(x) > 0 for all x ∈ (a, b) except for a finite number of points, where f ' (x) = 0, then f(x) is increasing on (a, b).
- If f '(x) < 0 for all x ∈ (a, b) except for a finite number of points, where f '(x) = 0, then f(x) is decreasing on (a, b).

Properties of Monotonic Functions

- 1. If f(x) is strictly increasing function on an interval [a, b], then f^{-1} existent also a strictly increasing function.
- 2. If f(x) is strictly increasing function on [a, b] stription is continuous, then f⁻¹ is continuous on [f(a), f(b)].
- 3. If f(x) and g(x) are strictly increasing (or decreasing) function on [a, b], then gof(x) is strictly increasing (a vertice) function on [a, b].
- 4. If one of the w functions f(x) ard (x) is strictly increasing and other a strictly decreasing, then gof(x) is strictly decreasing on [a, b].
- 5. If f(x) is continuous on [a, b], such that f' (c) ≥ 0 (f ' (c) ≥ 0) for each c \in (a, b) is strictly increasing function on [a, b].
- 6. If f(x) is continuous on [a, b] such that $f'(c) \le (f'(c) < 0)$ for each $c \in (a, b)$, then f(x) is strictly decreasing function on [a, b].

Maxima and Minima of Functions

1. A function y = f(x) is said to have a local maximum at a point x = a. If $f(x) \le f(a)$ for all $x \in (a - h, a + h)$, where h is somewhat small but positive quantity.

In order to find the global maximum and minimum of f(x) in [a, b], find out all critical points of f(x) in [a, b] (i.e., all points at which f '(x)= 0) and let $f(c_1)$, $f(c_2)$,..., $f(_n)$ be the values of the function at these points.

Then, $M_1 \rightarrow Global$ maxima or greatest value. and $M_1 \rightarrow Global$ minima or least value. where $M_1 = \max \{ f(a), f(c_1), f(c_1), \dots, f(c_n), f(b) \}$ and $M_1 = \min \{ f(a), f(c_1), f(c_2), \dots, f(c_n), f(b) \}$

Then, M_1 is the greatest value or global maxima in [a, b] and M_1 is the least value or global minima in [a, b].

Preview from Notesale.co.uk Page 14 of 14