T, and u is an associated eigenvector.

(4) Suppose $T \in L(F^2)$ is defined by T(w, z) = (-z, w). Find the minimal polynomial of T.

Observe T's action on (w, z): $T(w, z) = (-z, w) \Rightarrow T^2(w, z)$. Then, $T^2(w, z) = T(-z, w) = (-w, -z)$. This yields that $T^2(w, z) = -I(w, z)$, where I is the identity of F^2 . Hence, $T^2 + I = 0$, implying that the minimal polynomial m(T) is $m(t) = t^2 + 1$.

(5) Suppose $L \in L(V)$ and $p \in P(F)$. Prove that there exists a unique $r \in P(F)$ such that p(T) = r(T) and deg(r) is less than the degree of the minimal polynomial of T.

Let m_L be the minimal polynomial L with $\deg(m_L) = n$. Using polynomial division, we find that $p(t) = m_L(t)q(t) + r(t)$ with $\deg(r) < n$. Then, when we apply L, we get $p(L) = m_L(L)q(L) + r(L)$. However, since $m_L(L) = 0$, p(L) = r(L). Given anything produced by the division algorithm is used, there exists a single r(t) for each p(t) given an $m_L(t)$.

(6) Suppose V is finite-dimensional and $T \in L(V)$ has a minimal polynomial $4 + 5z - 6z^2 - 7z^3 + 2z^4 + z^5$. Find the minimal polynomial of T^{-1} . From the minimal polynomial $m_T(z)$, we know that $(m_T)(T) = 4I + 5T - 4x^2 + 2T^4 + T^5 = 0$ Multiplying the entrefequation by T^{-5} , we get $4T^{-5} + 5T^{-4} + 5T^{-4} + 2T^{-1} + I = 0$ Substitute $w = T^{-1}$ into the equation:

 $4w^5 + 5w^4 - 6w^3 - 7w^2 + 2w + 1 = 0$

Then, we reorder the polynomial into standard form, giving

$$w^{5} + \frac{5}{4}w^{4} - \frac{3}{2}w^{3} - \frac{7}{4}w^{2} + \frac{1}{2}w + \frac{1}{4} = 0$$

Therefore, our minimal polynomial of T^{-1} is

$$z^{5} + \frac{5}{4}z^{4} - \frac{3}{2}z^{3} - \frac{7}{4}z^{2} + \frac{1}{2}z + \frac{1}{4}z$$