Limits Definitions

Precise Definition : We say $\lim_{x \to a} f(x) = L$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $0 < |x-a| < \delta$ then $|f(x)-L| < \varepsilon$.

"Working" Definition : We say $\lim_{x \to a} f(x) = L$

if we can make f(x) as close to L as we want by taking x sufficiently close to a (on either side of a) without letting x = a.

Right hand limit : $\lim_{x \to a^+} f(x) = L$. This has the same definition as the limit except it requires x > a.

Left hand limit : $\lim f(x) = L$. This has the same definition as the limit except it requires x < a.

Limit at Infinity : We say $\lim_{x\to\infty} f(x) = L$ if we can make f(x) as close to L as we want by taking x large enough and positive.

There is a similar definition for $\lim_{x\to\infty} f(x) = L$ except we require x large and negative.

Infinite Limit : We say $\lim_{x \to \infty} f(x) = \infty$ if we can make f(x) arbitrarily large (and positive) by taking x sufficiently close to a (on either side of a) without letting x = a.

There is a similar definition for $\lim_{x \to a} f(x) = -\infty$ except we make f(x) arbitrarily arge and CO.UK negative. Relationship between the limit and mesidee limits $\lim_{x \to a} f(x) = L \implies \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \qquad \text{Order f}(x) = \lim_{x \to a^-} f(x) = L \implies \lim_{x \to a} f(x) = L$ $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \implies \lim_{x \to a^-} f(x) \implies \lim_{x \to a^-} f(x) \implies \text{Does Not Exist}$

Assume $\lim f(x)$ and $\lim g(x)$ both exist and c is any number then,

1. $\lim_{x \to a} \left[cf(x) \right] = c \lim_{x \to a} f(x)$ 4. $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ provided } \lim_{x \to a} g(x) \neq 0$ 2. $\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$ 5. $\lim_{x \to a} \left[f(x) \right]^n = \left[\lim_{x \to a} f(x) \right]^n$ 6. $\lim_{x \to \infty} \left[\sqrt[n]{f(x)} \right] = \sqrt[n]{\lim_{x \to \infty} f(x)}$ 3. $\lim_{x \to \infty} \left[f(x)g(x) \right] = \lim_{x \to \infty} f(x) \lim_{x \to \infty} g(x)$

Basic Limit Evaluations at $\pm \infty$

Note : $\operatorname{sgn}(a) = 1$ if a > 0 and $\operatorname{sgn}(a) = -1$ if a < 0.

- 1. $\lim_{x\to\infty} \mathbf{e}^x = \infty$ & $\lim_{x\to-\infty} \mathbf{e}^x = 0$
- 2. $\lim_{x \to \infty} \ln(x) = \infty \quad \& \quad \lim_{x \to 0^+} \ln(x) = -\infty$
- 3. If r > 0 then $\lim_{x \to \infty} \frac{b}{r^r} = 0$
- 4. If r > 0 and x^r is real for negative x then $\lim_{x \to -\infty} \frac{b}{x^r} = 0$
- 5. n even : $\lim_{x \to +\infty} x^n = \infty$ 6. n odd: $\lim_{x \to \infty} x^n = \infty \& \lim_{x \to -\infty} x^n = -\infty$ 7. *n* even : $\lim_{x \to +\infty} a x^n + \dots + b x + c = \operatorname{sgn}(a) \infty$ 8. n odd: $\lim_{x \to \infty} a x^n + \dots + b x + c = \operatorname{sgn}(a) \infty$
- 9. n odd: $\lim_{x \to \infty} a x^n + \dots + c x + d = -\operatorname{sgn}(a) \infty$