
Anywhere(WORA).

Secured

 No explicit pointer

 Programs run inside virtual machine sandbox.

 Classloader- adds security by separating the package for the classes of the local file

system from those that are imported from network sources.

 Bytecode Verifier- checks the code fragments for illegal code that can violate access

right to objects.

 Security Manager- determines what resources a class can access such as reading and

writing to the local disk.

These security are provided by java language. Some security can also be provided by

application developer through SSL,JAAS,cryptography etc.

Robust

Robust simply means strong. Java uses strong memory management. There are lack of

pointers that avoids security problem. There is automatic garbage collection in java. There is

exception handling and type checking mechanism in java. All these points makes java robust.

Preview from Notesale.co.uk

Page 6 of 100

Architecture-neutral

There is no implementation dependent features e.g. size of primitive types is set.

Portable

We may carry the java bytecode to any platform.

High-performance

Java is faster than traditional interpretation since byte code is "close" to native code still

somewhat slower than a compiled language (e.g., C++)

Distributed

We can create distributed applications in java. RMI and EJB are used for creating distributed

applications. We may access files by calling the methods from any machine on the internet.

Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs that

deal with many tasks at once by defining multiple threads. The main advantage of multi-

threading is that it shares the same memory. Threads are important for multi-media, Web

applications etc.

Requirement for Hello Java Example

For executing any java program, you need to

 install the JDK if you don't have installed it, download the JDK and install it.

 set path of the jdk/bin directory. http://www.javatpoint.com/how-to-set-path-in-java

 create the java program

 compile and run the java program

Creating hello java example

Let's create the hello java program:

1. class Simple{

2. public static void main(String args[]){

3. System.out.println("Hello Java");

Preview from Notesale.co.uk

Page 7 of 100

|| Called Logical OR Operator. If any of the

two operands are non-zero, then the

condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its operand. If

a condition is true then Logical NOT

operator will make false.

!(A && B) is true.

The Assignment Operators:

There are following assignment operators supported by Java language:

Show Examples

Operator Description Example

= Simple

assignment

operator,

Assigns values

from right side

operands to left

side operand

C = A + B will assign value of A + B into C

+= Add AND

assignment

operator, It adds

right operand to

the left operand

and assign the

result to left

operand

C += A is equivalent to C = C + A

-= Subtract AND

assignment

C -= A is equivalent to C = C - A

Preview from Notesale.co.uk

Page 22 of 100

13. System.out.println(a[i]);
14.
15. }}

Output: 10

 20

 70

 40

 50

Declaration, Instantiation and Initialization of Java Array

We can declare, instantiate and initialize the java array together by:

1. int a[]={33,3,4,5};//declaration, instantiation and initialization

Let's see the simple example to print this array.

1. class Testarray1{
2. public static void main(String args[]){
3.
4. int a[]={33,3,4,5};//declaration, instantiation and initialization
5.
6. //printing array
7. for(int i=0;i<a.length;i++)//length is the property of array
8. System.out.println(a[i]);
9.
10. }}

Output:33

 3

 4

 5

Multidimensional array in java

In such case, data is stored in row and column based index (also known as matrix form).

Syntax to Declare Multidimensional Array in java

1. dataType[][] arrayRefVar; (or)
2. dataType [][]arrayRefVar; (or)
3. dataType arrayRefVar[][]; (or)
4. dataType []arrayRefVar[];

Preview from Notesale.co.uk

Page 33 of 100

JDK 1.5 introduced a new for loop known as foreach loop or enhanced for loop, which enables

you to traverse the complete array sequentially without using an index variable.

Example:

The following code displays all the elements in the array myList:

public class TestArray {

 public static void main(String[] args) {

 double[] myList = {1.9, 2.9, 3.4, 3.5};

 // Print all the array elements

 for (double element: myList) {

 System.out.println(element);

 }

 }

}

This would produce the following result:

1.9

2.9

3.4

3.5

Java - Loop Control

Java has very flexible three looping mechanisms. You can use one of the following three loops:

 while Loop

 do...while Loop

 for Loop

Class in Java

A class is a group of objects that has common properties. It is a template or blueprint from

which objects are created.

A class in java can contain:

 data member

 method

Preview from Notesale.co.uk

Page 36 of 100

Advantage of Method

 Code Reusability

 Code Optimization

new keyword

The new keyword is used to allocate memory at runtime.

Example of Object and class that maintains the records of students

In this example, we are creating the two objects of Student class and initializing the value to

these objects by invoking the insertRecord method on it. Here, we are displaying the state

(data) of the objects by invoking the displayInformation method.

1. class Student2{

2. int rollno;

3. String name;

4.

5. void insertRecord(int r, String n){ //method

6. rollno=r;

7. name=n;

8. }

9.

10. void displayInformation(){System.out.println(rollno+" "+name);}//method

11.
12. public static void main(String args[]){

13. Student2 s1=new Student2();

14. Student2 s2=new Student2();

15.
16. s1.insertRecord(111,"Karan");

17. s2.insertRecord(222,"Aryan");

18.
19. s1.displayInformation();

20. s2.displayInformation();

21.
22. }

23. }

Test it Now

 111 Karan

 222 Aryan

Preview from Notesale.co.uk

Page 39 of 100

 By clone() method

 By factory method etc.

Java - Methods

A Java method is a collection of statements that are grouped together to perform an operation.

When you call the System.out.println method, for example, the system actually executes several

statements in order to display a message on the console.

Creating Method:

Considering the following example to explain the syntax of a method:

public static int funcName(int a, int b) {

 // body

}

Here,

 public static : modifier.

 int: return type

 funcName: function name

 a, b: formal parameters

 int a, int b: list of parameters

Methods are also known as Procedures or Functions:

 Procedures: They don't return any value.

 Functions: They return value.

Method definition consists of a method header and a method body. The same is shown below:

modifier returnType nameOfMethod (Parameter List) {

 // method body

}

Preview from Notesale.co.uk

Page 41 of 100

28. s3.display();
29. }
30. }

Output:111 Karan BBDIT

 222 Aryan BBDIT

 333 Sonoo BBDIT

Another example of static method that performs normal calculation

1. //Program to get cube of a given number by static method
2.
3. class Calculate{
4. static int cube(int x){
5. return x*x*x;
6. }
7.
8. public static void main(String args[]){
9. int result=Calculate.cube(5);
10. System.out.println(result);
11. }
12. }

Output:125

Restrictions for static method

There are two main restrictions for the static method. They are:

1. The static method can not use non static data member or call non-static method directly.

2. this and super cannot be used in static context.

1. class A{
2. int a=40;//non static
3.
4. public static void main(String args[]){
5. System.out.println(a);
6. }
7. }

Output:Compile Time Error

Q) why java main method is static?

Ans) because object is not required to call static method if it were non-static method, jvm create object

Preview from Notesale.co.uk

Page 54 of 100

ABSTRACT CLASS

1. A class that is declared with abstract keyword, is known as abstract class in java.

2. It can have abstract and non-abstract methods (CONCRETE METHODS-method with body).

3. An abstract class can not be instantiated (you are not allowed to create object of Abstract

class).

4. It needs to be extended and its method implemented. It cannot be instantiated.

5. Abstract methods must be implemented in the child class (if the class is not abstract) otherwise

program will throw compilation error.

6. Abstraction is a process of hiding the implementation details and showing only functionality to

thE USER.

Ways to achieve Abstaction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)
2. Interface (100%)

EXAMPLE:

abstract public class AbstractDemo{

 public void myMethod(){

 System.out.println("Hello");

 }

 abstract public void anotherMethod();

}

public class ConcreteDemo{

 public void anotherMethod() {

 System.out.print("Abstract method");

 }

 public static void main(String args[])

 {

 //Can't create object of abstract class - error!

 AbstractDemo obj = new AbstractDemo();

 obj.display();

 }

}

Output:

Unresolved compilation problem: Cannot instantiate the type AbstractEx1

Note: The class that extends the abstract class, have to implement all the abstract methods of

abstract class, else they can be declared abstract in the class as well.

Preview from Notesale.co.uk

Page 59 of 100

15. obj.print();
16. }
17. }

Hello

As you can see in the above example, Printable and Showable interface have same methods but

its implementation is provided by class A, so there is no ambiguity.

Interface inheritance

A class implements interface but one interface extends another interface .

1. interface Printable{
2. void print();
3. }
4. interface Showable extends Printable{
5. void show();
6. }
7. class Testinterface2 implements Showable{
8.
9. public void print(){System.out.println("Hello");}
10. public void show(){System.out.println("Welcome");}
11.
12. public static void main(String args[]){
13. Testinterface2 obj = new Testinterface2();
14. obj.print();
15. obj.show();
16. }
17. }

 Hello

 Welcome

KEY POINTS

1)We can’t instantiate an interface in java.

2) Interface provides complete abstraction as none of its methods can have body. On the other

hand, abstract class provides partial abstraction as it can have abstract and concrete(methods with

body) methods both.

3) implements keyword is used by classes to implement an interface.

4) While providing implementation in class of any method of an interface, it needs to be

mentioned as public.

Preview from Notesale.co.uk

Page 64 of 100

}

14) Methods with same signature but different return type can’t be implemented at a time for two

or more interfaces.

interface A

{

 public void aaa();

}

interface B

{

 public int aaa();

}

class Central implements A,B

{

 public void aaa() // error

 {

 }

 public int aaa() // error

 {

 }

 public static void main(String arg[])

 {

 }

}

15) Variable names conflicts can be resolved by interface name e.g:

interface A

{

 int x=10;

}

interface B

{

 int x=100;

}

class Hello implement A,B

{

 public static void Main(String arg[])

 {

 System.out.println(x); // reference to x is ambiguous both variables

are x

 System.out.println(A.x);

 System.out.println(B.x);

 }

}

Preview from Notesale.co.uk

Page 67 of 100

22. class Test5{
23. public static void main(String args[]){
24. A a=new M();
25. a.a();
26. a.b();
27. a.c();
28. a.d();
29. }}

Output:

 I am a

 I am b

 I am c

 I am d

INNER CLASS

Java inner class or nested class is a class i.e. declared inside the class or interface.

Additionally, it can access all the members of outer class including private data members and

methods.

Syntax of Inner class

1. class Java_Outer_class{
2. //code
3. class Java_Inner_class{
4. //code
5. }
6. }

Advantage of java inner classes

There are basically three advantages of inner classes in java. They are as follows:

1) Nested classes represent a special type of relationship that is it can access all the members

(data members and methods) of outer class including private.

2) Nested classes are used to develop more readable and maintainable code because it

logically group classes and interfaces in one place only.

3) Code Optimization: It requires less code to write.

Types of Nested classes

Preview from Notesale.co.uk

Page 69 of 100

You can use multiple catch block with a single try.

Problem without exception handling

Let's try to understand the problem if we don't use try-catch block.

1. public class Testtrycatch1{
2. public static void main(String args[]){
3. int data=50/0;//may throw exception
4. System.out.println("rest of the code...");
5. }
6. }

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

As displayed in the above example, rest of the code is not executed (in such case, rest of the

code... statement is not printed).

There can be 100 lines of code after exception. So all the code after exception will not be

executed.

Solution by exception handling

Let's see the solution of above problem by java try-catch block.

1. public class Testtrycatch2{
2. public static void main(String args[]){
3. try{
4. int data=50/0;
5. }catch(ArithmeticException e){System.out.println(e);}
6. System.out.println("rest of the code...");
7. }
8. }

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

Now, as displayed in the above example, rest of the code is executed i.e. rest of the code...

statement is printed.

Preview from Notesale.co.uk

Page 84 of 100

Java throw example

1. void m(){

2. throw new ArithmeticException("sorry");

3. }

Java throws example

1. void m()throws ArithmeticException{

2. //method code

3. }

Java throw and throws example

1. void m()throws ArithmeticException{

2. throw new ArithmeticException("sorry");

3. }

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by throw keyword

 EXAMPLE :

public class TestThrow1{

 static void validate(int age){

 if(age<18)

 throw new ArithmeticException("not valid");

 else

 System.out.println("welcome to vote");

 }

 public static void main(String args[]){

 validate(13);

 System.out.println("rest of the code...");

 }

Preview from Notesale.co.uk

Page 92 of 100

Java final method

If you make any method as final, you cannot override it.

Example of final method

class Bike{

 final void run(){System.out.println("running");}

}

 class Honda extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

 public static void main(String args[]){

 Honda honda= new Honda();

 honda.run();

 }

}

Output:Compile Time Error

Java final class

If you make any class as final, you cannot extend it.

Example of final class

final class Bike{}

 class Honda1 extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

 public static void main(String args[]){

 Honda1 honda= new Honda();

 honda.run(); } }

Preview from Notesale.co.uk

Page 97 of 100

Output:70

static blank final variable

A static final variable that is not initialized at the time of declaration is known as static blank

final variable. It can be initialized only in static block.

Example of static blank final variable

1. class A{
2. static final int data;//static blank final variable
3. static{ data=50;}
4. public static void main(String args[]){
5. System.out.println(A.data);
6. }
7. }

What is final parameter?

If you declare any parameter as final, you cannot change the value of it.

1. class Bike11{
2. int cube(final int n){
3. n=n+2;//can't be changed as n is final
4. n*n*n;
5. }
6. public static void main(String args[]){
7. Bike11 b=new Bike11();
8. b.cube(5);
9. }
10. }

Output:Compile Time Error

Java finalize example

1. class FinalizeExample{

2. public void finalize(){System.out.println("finalize called");}

3. public static void main(String[] args){

4. FinalizeExample f1=new FinalizeExample();

5. FinalizeExample f2=new FinalizeExample();

6. f1=null;

7. f2=null;

8. System.gc();

9. }}

Preview from Notesale.co.uk

Page 99 of 100

