REVIEW AND INTRODUCTION

Example 1: Differentiate each of the following:

(a)
$$y = 3x^2 - 5x + 8$$

(b)
$$y = x^2 e^x$$

(c)
$$y = \ln x/x$$

(d)
$$y = (x^3 + x - 1)^4$$

(e)
$$y = \sqrt{x^2 + 1}$$

(f)
$$y = \sin(x^2)$$

(g)
$$y = \sin^2 x$$

(h)
$$y = e^{\tan x}$$

REVIEW AND INTRODUCTION

The **second partial derivatives** of f come in four types:

Notation

Differentiate f with respect to x twice.
(That is, differentiate f with respect to x; then differentiate the result with respect to x again.)

$$\frac{\partial^2 f}{\partial x^2}$$
 or f_x

■ Differentiate f with respect to y twice. (That is, differentiate f with respect to y; then differentiate the result with respect to y again.)

$$\frac{\partial^2 f}{\partial y^2}$$
 or f_{yy}

REVIEW AND INTRODUCTION

Techniques of Indefinite Integration

Integration by substitution. This section opens with integration by substitution, the most widely used integration technique, illustrated by several examples. The idea is simple: Simplify an integral by letting a single symbol (say the letter u) stand for some complicated expression in the integrand. If the differential of u is left over in the integrand, the process will be a success.

Differential Equations

Differential equations are among the linchpins of modern mathematics which, along with matrices, are essential for analyzing and solving complex problems in engineering. The emergence of low-cost, high-speed computers has spawned new techniques for solving differential equations, which allows problem solvers to model and solve complex problems based on systems of differential equations.

Differential Equations: Basic Definitions

If there is more than one independent variable and partial derivatives appear in the equation, the equation is called a partial differential equation. Some common examples are the heat equation

$$k\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2},\tag{3}$$

the wave equation

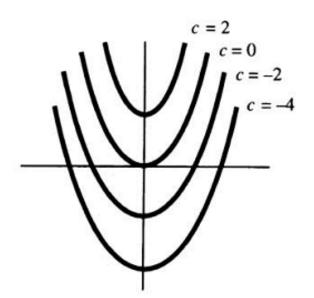
$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2},\tag{4}$$

the laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. {(5)}$$

It is obvious in these cases which is the dependent variable and which are the independent variables.

Differential Equations: Basic Definitions



Separable Equations

and the integral of the right-hand side is evaluated using integration by parts:

$$\int -x \cos x \, dx = -\int x \cos x \, dx$$
$$= -[x \sin x - \int \sin x \, dx]$$
$$= -(x \sin x + \cos x + c)$$

The solution of the differential equation is therefore

$$\cos y = x \sin x + \cos x + c \qquad \blacksquare$$

