S/N	Terms	'Amt of substance' used in calculation	Sample Equation	Signs of ∆H	Remarks
1	∆ H r ^e	Overall based on thermochemical eqn	<u>2H₂(g)</u> + <u>O₂(g)</u> → <u>2H₂Q (/)</u>	+/ve	$\Delta H_r = \sum \Delta H_f \text{ of product} - \sum \Delta H_f \text{ of reactant}$
2	∆ H_n •	Water formed after neutralisation	NaOH(aq) + HC(2q) → NaCl(aq) + <u>H₂O(I)</u>	Always –ve	Formation of water
3	∆ H_c •	Compound before burning	$\underline{\textbf{C}_{3}\textbf{H}_{6}\left(\textbf{g}\right)}+\underline{\textbf{h}_{2}^{1}}\textbf{O}_{2}\left(\textbf{g}\right)\rightarrow3\textbf{CO}_{2}\left(\textbf{g}\right)+3\textbf{H}_{2}\textbf{O}\left(\textbf{I}\right)$	Usually –ve	Energy is usually released during burning
4	DAHE N	Gasenus atoms formed after atomisation	$\frac{1}{2}\text{Cl}_2(g) \rightarrow \underline{\text{Cl}}(g)$	Always +ve	Breaking the bonds between atoms
		Gaseous compound before atomisation	<u>C₂H₀(g)</u> → 2C (g) + 6H (g)	Always +ve	Breaking bonds in the compound
5	$\Delta H_{disso}^{\Theta}$	Covalent bonds broken during dissociation	$CH_4(g) \rightarrow CH_3(g) + H(g)$ Number of C-H bonds broken	Always +ve	Breaking the bond between atoms
6	I.E.	Electrons removed from gaseous atoms	<u>Cl (g)</u> → <u>Cl⁺ (g)</u> + <u>e⁻</u>	Always +ve	Overcome the attraction of valence e ⁻ and nucleus
7	E.A.	Electrons added to gaseous atoms	<u>O (g)</u> + <u>e</u> ⁻ → <u>O⁻ (g)</u>	1 st : Always –ve Usually +ve	e ⁻ forms bond with atom; overcome e ⁻ repulsion
8	ΔH_{latt}^{Θ}	Ionic compound formed from gaseous ions	$Mg^{2+}(g) + 2Cl^{-}(g) \rightarrow MgCl_{2}(s)$	Always –ve	Formation of bond between ions
9	$\Delta \mathbf{H}_{\mathbf{hyd}}^{\mathbf{\Phi}}$	Gaseous ions before hydration	<u>Na⁺ (g)</u> + aq \rightarrow Na⁺ (aq)	Always –ve	Formation of bond between ion and water
10	∆ H_{sol} ●	Substance before dissolving	$\underline{MgCl_2(\mathbf{s})} + \mathrm{aq} \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq}) + 2\mathrm{Cl}^{-}(\mathrm{aq})$	+/-ve	$-ve \rightarrow soluble$ +ve $\rightarrow insoluble$
11	∆H _f ●	Compound formed from constituent elements	$K(s) + \frac{1}{2}Cl_2(g) + \frac{3}{2}O_2(g) \rightarrow \underline{KClO_3(s)}$	+/ve	$\Delta H_{f^{\Theta}}$ of element = 0

PS: Unless the definition states that the particles are in its gaseous state, it will always be in its standard state.