Term	Expansion
$(a + b)^0 =$	1
$(a + b)^1 =$	1a+1b
$(a + b)^2 =$	$1a^2$ +2ab+1 b^2
$(a + b)^3 =$	$1a^3 + 3a^2b + 3ab^2 + 1b^3$
$(a + b)^4 =$	$1a^4 +4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$
$(a + b)^5 =$	$1a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + 1b^5$

Pascal's Triangle

the power of (a), when looking at each term at any expansions and moving from left to right, follows the pattern:

n,n-1,n-2,.....2,1,0

the power of (b), when looking at each term at any expansions and k moving from left to right , follows the pattern: 0,1,2.....n-2,n-1,n

The value of the coefficients of each of the ter ns in any of the ne symmetrica of Q Se middle coefficient when (n) is expansions even and symmetrical about the middle 2 coefficients when (n) is odd.

Term	Value of coefficients in the expansion
$(a+b)^{0}=$	1
$(a + b)^1 =$	1 1
$(a+b)^2 =$	1 2 1
$(a+b)^3 =$	1 3 3 1
$(a + b)^4 =$	1 4 6 4 1
$(a + b)^5 =$	1 5 10 10 5 1