PART A – PHYSICS

1. A uniform cylinder of length L and mass M having cross - sectional area A is suspended, with its length vertical, from a fixed point by a massless spring such that it is half submerged in a liquid of density σ at equilibrium position. The extension x_0 of the spring when it is in equilibrium is :

(1) $\frac{Mg}{k}$ (2) $\frac{Mg}{k} \left(1 - \frac{LA\sigma}{M}\right)$ (3) $\frac{Mg}{k} \left(1 - \frac{LA\sigma}{2M}\right)$ (4) $\frac{Mg}{k} \left(1 + \frac{LA\sigma}{2M}\right)$	$\frac{LA\sigma}{M}$
---	----------------------

$$kx_0 + F_B = mg$$

 $kx_0 + \sigma \frac{L}{2} Ag = Mg$

Sol.

$$x_{0} = \frac{Mg - \frac{\sigma LAg}{2}}{k}$$

$$= \frac{Mg}{k} \left(1 - \frac{\sigma LA}{2M} \right)$$

11111 Mc

Ans (3)

A metallic rod of length 'l' is tied to a string of length 2I and made to rotate with and 2. speed ω on a

Sol. $q = CV (1 - e^{t/\tau})$ at $t = 2\tau$ $q = CV (1 - e^{-2})$ **Ans (3)**

21. Two coherent point sources S_1 and S_2 are separated by a small distance 'd' as shown. The fringes obtained on the screen will be :

Sol. As λ is increased, there will be a value of λ above which photoelectrons will be cease to come out so photocurrent will become zero. Hance (4) is correct answer. **Ans (4)**

PART B – CHEMISTRY

31.	Which of the following complex species is not expected to exhibit optical isomerism ?					
	(1) $[Co(en)_3]^{3+}$		(2) $[Co(en)_2 Cl_2]^+$	CL 1 ⁺		
Ans.	(3) $[CO(INH_3)_3 CI_3]$ (3)		(4) [CO(en) (NH_3) ₂			
Sol.	[Co(NH ₃) ₃ Cl ₃] show faci	ial as well as meridional i	isomerism. But both	contain plane of sy	mmetry.	
	So, the answer is (3).					
32.	Which one of the follow	ing molecules is expecte	ed to exhibit diamagr	netic behaviour?	. 14	
	(1) C ₂	(2) N ₂	(3) O ₂	(4) S ₂	63	
Ans.	(1) and (2)				-/.)	
Sol.	N_2 and C_2 both are diam	nagnetic			1	
	Alis is (1) aliu (2).					
33.	A solution of $(-) - 1$	– chloro–1–phenylethan	e in toluene racemi	ises slowly in the p	resence of a small	
	amount of SbCl ₅ , due to	o the formation of :		PA	P	
	(1) carbanion		(2) carbene	10		
	(3) carbocation		(4) free radical			
Ans.	(3)					
Sol	CLCH_CH SbCl₅ F			SHOL	M	
501.	Ph	carbocation) $(1-C)^{-1}$			uk	
	(-)		(d + I) mixture	Je.Cu.	-	
		44	Late5			
	2		NOU	2		
34.	Given: $E_{Cr^{3+}/Cr}^{0} = -0.7$	74 V ; Mio //in ²⁺ = 1.5	51 V			
	-vie	W H	14			
	$P_{C_{12}O_{7}^{2-}/Cr^{3+}} =$		V			
	Based on the data give	n above, strongest oxidis	sing agent will be:			
	(1) Cl	(2) Cr^{3+}	$(3) \operatorname{Mn}^{2+}$	(4) MnO		
Ans.	(4)		(-)	()		
Sol.	Higher the SRP, better i	is oxidising agent				
1	Hence MnO ₄ ⁻ is stronge	est oxidising agent.				
25	A pietop filled with 0.0	a 1 mai of an ideal goo av	vnanda ravaraibly fr	rom 50.0 ml to 275	m at a constant	
55.	temperature of 37.0°C.	As it does so, it absorbs	208 J of heat. The va	alues of a and w for	the process will be:	
	(R = 8.314 J/mol K) (In	7.5 = 2.01)			p	
	(1) q = +208 J, w = -20)8 J	(2) q = –208 J, w	= – 208 J		
	(3) $q = -208 J, w = +20$)8 J	(4) q = +208 J, w	= + 208 J		
Ans.	(3) q = -208 J, w = + 20 (1) The process is isotherm)8 J	(4) q = +208 J, w	= + 208 J		
Ans. Sol.	(3) $q = -208 J$, $w = +20$ (1) The process is isotherm q = +208 J	08 J nal expansion Hence, q :	(4) q = +208 J, w = - w △	= + 208 J Au = 0		

Alternate

Statement-II : $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ ~ q \rightarrow ~ p is contrapositive of $p \rightarrow q$ hence $(p \rightarrow q) \leftrightarrow (p \rightarrow q)$ will be a tautology statement -II $(p \land \neg q) \land (\neg p \land q)$

р	q	P ^ ~ q	~p ^ q	(p ^ ~ q) ^ (~ p ^ q)
Т	Т	F	F	F
Т	F	Т	F	F
F	Т	F	Т	F
F	F	F	F	F

- [x³

Notesale.co.uk 6 of 32

(4) 2

dx + C

It is a fallacy *.*:.

If $\int f(x)dx = \psi(x)$, then $\int x^5 f(x^3)dx$ is equal to 74. (1) $\frac{1}{3} \left[x^3 \psi(x^3) - \int x^2 \psi(x^3) dx \right] + C$ (2) $\frac{1}{3}x^{3}\psi(x^{3}) - 3\int x^{3}\psi(x^{3}) dx + C$ (3) $\frac{1}{3}x^{3}\psi(x^{3}) - \int x^{2}\psi(x^{3}) dx + C$ (4) $\frac{1}{2} \left[x^3 \psi(x^3) \right]$

Sol. (3)

$$\int f(x)dx = \psi(x)$$

$$I = \int x^{5}f(x^{3})dx$$
put $x^{3} = t \implies x^{2}dx = \frac{dt}{3}$

$$= \frac{1}{3}\int tf(t)dt$$

$$= \frac{1}{3}\left[\psi(x^{3}) - 3\int x^{2}\psi(x^{3})dx\right] + c$$

$$\frac{1}{3}\left[x^{3}\psi(x^{3}) - 3\int x^{2}\psi(x^{3})dx\right] + c$$

 $\psi(\mathbf{x}) d\mathbf{x} + \mathbf{c}$

 $\lim \frac{(1 - \cos 2x)(3 + \cos x)}{1 + \cos 4x}$ is equal to 75. x tan 4x **→**0

Sol.

$$(1) - \frac{1}{4}$$

$$I = \lim_{x \to 0} \frac{(1 - \cos 2x) (3 + \cos x)}{x^2} \frac{x}{1} \cdot \frac{x}{\tan 4x}$$
$$= \lim_{x \to 0} \frac{2\sin^2 x}{x^2} \cdot \frac{3 + \cos x}{1} \cdot \frac{x}{\tan 4x}$$
$$= 2.4 \cdot \frac{1}{4} = 2$$

(2) $\frac{1}{2}$

(3) 1

Sol. (1)
Let
$$AB = x$$

 $\tan (\pi - 0 - \alpha) = \frac{p}{x-q} \Rightarrow \tan (0 + \alpha) = \frac{p}{q-x}$
 $\Rightarrow q - x = q - p \left(\frac{10 + \alpha}{cot a + cot 0}\right)$
 $= q - p \left(\frac{q \cot \theta - \alpha}{p + cot 0}\right) = q - p \left(\frac{q \cot \theta - p}{q + p \cot 0}\right) = q - p \left(\frac{q \cos \theta - p \sin \theta}{q \sin \theta + p \cos \theta}\right)$
 $\Rightarrow x = \frac{q^2 \sin \theta + pq \cos \theta - pq \cos \theta + p^2 \sin \theta}{p \cos \theta + q \sin \theta} \Rightarrow AB = \frac{(p^2 + q^2) \sin \theta}{p \cos \theta + q \sin \theta}$
Atternative
From Sine Rule
 $\frac{AB}{\sin \theta} = \frac{\sqrt{p^2 + q^2}}{\sin (\pi - (\theta + \alpha))}$
 $AB = \frac{(p^2 + q^2) \sin \theta}{\sin \theta + p \cos \theta}$
 $= \frac{(p^2 + q^2) \sin \theta}{p \cos \theta + q \sin \theta}$
 $= \frac{(p^2 + q^2) \sin \theta}{p \cos \theta + q \sin \theta}$
 $AB = \frac{(p^2 + q^2) \sin \theta}{p \cos \theta + q \sin \theta}$
 $= \frac{(p^2 + q^2) \sin \theta}{p \cos \theta + q \sin \theta}$
 BS . If $P \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoin of all - 0 matrix A and |A| = 4, then \alpha is equal to :
Sol. (2)
 $P = 1(12 - 12) - \alpha(4 - \theta) + 3(4 - \theta)$
 $y = 2x$, are equal to :
Sol. (1)
 $q = 1x | = 2$
 $x = x^2$
points $y = \int_0^{12} |1| dt = 2$
 $x = x^2$
points $y = \int_0^{12} |1| dt = 2$
 $x = x^2$
points $y = \int_0^{12} |1| dt = 2$
 $x = x^2$
points $y = \int_0^{12} |1| dt = 2$
 $x = x^2$
points $y = \int_0^{12} |1| dt = 2$
 $x = x^2$
 $x = x$