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6 Physics Formulary by ir. J.C.A. Wevers

1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:

~L′ = I~ω + ~L′
n

whereI is themoment of inertiawith respect to a central axis, which is given by:

I =
∑

i

mi~ri
2 ; T ′ = Wrot = 1

2ωIij~ei~ej = 1
2Iω

2

or, in the continuous case:

I =
m

V

∫
r′2ndV =

∫
r′2ndm

Further holds:
Li = Iijωj ; Iii = Ii ; Iij = Iji = −

∑
k

mkx
′
ix

′
j

Steiner’s theorem is:Iw.r.t.D = Iw.r.t.C +m(DM)2 if axis C‖ axis D.

Object I Object I

Cavern cylinder I = mR2 Massive cylinder I = 1
2mR

2

Disc, axis in plane disc through m I = 1
4mR

2 Halter I = 1
2µR

2

Cavern sphere I = 2
3mR

2 Massive sphere I = 2
5mR

2

Bar, axis⊥ through c.o.m. I = 1
12ml

2 Bar, axis⊥ through end I = 1
3ml

2

Rectangle, axis⊥ plane thr. c.o.m. I = 1
12m(a2 + b2) Rectangle, axis‖ b thr. m I = ma2

1.6.2 Principal axes

Each rigid body has (at least) 3 principal axes which stand⊥ to each other. For a principal axis holds:

∂I

∂ωx
=

∂I

∂ωy
=

∂I

∂ωz
= 0 so L′

n = 0

The following holds:ω̇k = −aijkωiωj with aijk =
Ii − Ij
Ik

if I1 ≤ I2 ≤ I3.

1.6.3 Time dependence

For torque of force~τ holds:

~τ ′ = Iθ̈ ;
d′′~L′

dt
= ~τ ′ − ~ω × ~L′

Thetorque~T is defined by:~T = ~F × ~d.

1.7 Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus

Starting with:

δ

b∫
a

L(q, q̇, t)dt = 0 with δ(a) = δ(b) = 0 and δ

(
du

dx

)
=

d

dx
(δu)
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Chapter 1: Mechanics 7

the equations of Lagrange can be derived:
d

dt

∂L
∂q̇i

=
∂L
∂qi

When there are additional conditions applying to the variational problemδJ(u) = 0 of the type
K(u) =constant, the new problem becomes:δJ(u)− λδK(u) = 0.

1.7.2 Hamilton mechanics

TheLagrangianis given by:L =
∑
T (q̇i) − V (qi). TheHamiltonianis given by:H =

∑
q̇ipi − L. In 2

dimensions holds:L = T − U = 1
2m(ṙ2 + r2φ̇2)− U(r, φ).

If the used coordinates arecanonicalthe Hamilton equations are the equations of motion for the system:

dqi
dt

=
∂H

∂pi
;

dpi

dt
= −∂H

∂qi

Coordinates are canonical if the following holds:{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij where{, } is the
Poisson bracket:

{A,B} =
∑

i

[
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

]

The Hamiltonian of a Harmonic oscillator is given byH(x, p) = p2/2m + 1
2mω

2x2. With new coordinates
(θ, I), obtained by the canonical transformationx =

√
2I/mω cos(θ) andp = −√2Imω sin(θ), with inverse

θ = arctan(−p/mωx) andI = p2/2mω + 1
2mωx

2 it follows: H(θ, I) = ωI.

The Hamiltonian of a charged particle with chargeq in an external electromagnetic field is given by:

H =
1

2m

(
~p− q ~A

)2

+ qV

This Hamiltonian can be derived from the Hamiltonian of a free particleH = p2/2m with the transformations
~p → ~p − q ~A andH → H − qV . This is elegant from a relativistic point of view: this is equivalent to the
transformation of the momentum 4-vectorpα → pα − qAα. A gauge transformation on the potentialsAα

corresponds with a canonical transformation, which make the Hamilton equations the equations of motion for
the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:(
∂V

∂qi

)
0

= 0 ; V (q) = V (0) + Vikqiqk with Vik =
(

∂2V

∂qi∂qk

)
0

With T = 1
2 (Mik q̇iq̇k) one receives the set of equationsMq̈ + V q = 0. If qi(t) = ai exp(iωt) is substituted,

this set of equations has solutions ifdet(V − ω2M) = 0. This leads to the eigenfrequencies of the problem:

ω2
k =

aT
k V ak

aT
kMak

. If the equilibrium is stable holds:∀k thatω2
k > 0. The general solution is a superposition if

eigenvibrations.

1.7.4 Phase space, Liouville’s equation

In phase space holds:

∇ =

(∑
i

∂

∂qi
,
∑

i

∂

∂pi

)
so ∇ · ~v =

∑
i

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

)
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14 Physics Formulary by ir. J.C.A. Wevers

W 2 = m2
0c

4 + p2c2. p = mrv = γm0v = Wv/c2, andpc = Wβ whereβ = v/c. Theforce is definedby
~F = d~p/dt.

4-vectors have the property that their modulus is independent of the observer: their componentscanchange
after a coordinate transformation but not their modulus. The difference of two 4-vectors transforms also as

a 4-vector. The 4-vector for the velocity is given byUα =
dxα

dτ
. The relation with the “common” velocity

ui := dxi/dt is: Uα = (γui, icγ). For particles with nonzero restmass holds:UαUα = −c2, for particles
with zero restmass (so withv = c) holds:UαUα = 0. The 4-vector for energy and momentum is given by:
pα = m0U

α = (γpi, iW/c). So:pαp
α = −m2

0c
2 = p2 −W 2/c2.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

1. Motion: with~ev · ~er = cos(ϕ) follows:
f ′

f
= γ

(
1− v cos(ϕ)

c

)
.

This can give both red- and blueshift, also⊥ to the direction of motion.

2. Gravitational redshift:
∆f
f

=
κM

rc2
.

3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:
λ0

λ1
=
R0

R1
.

3.1.3 The stress-energy tensor and the field tensor

The stress-energy tensor is given by:

Tµν = (%c2 + p)uµuν + pgµν +
1
c2
(
FµαF

α
ν + 1

4gµνF
αβFαβ

)
The conservation laws can than be written as:∇νT

µν = 0. The electromagnetic field tensor is given by:

Fαβ =
∂Aβ

∂xα
− ∂Aα

∂xβ

with Aµ := ( ~A, iV/c) andJµ := ( ~J, icρ). The Maxwell equations can than be written as:

∂νF
µν = µ0J

µ , ∂λFµν + ∂µFνλ + ∂νFλµ = 0

The equations of motion for a charged particle in an EM field become with the field tensor:

dpα

dτ
= qFαβu

β

3.2 General relativity

3.2.1 Riemannian geometry, the Einstein tensor

The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time
τ or arc lengths as parameter. For particles with zero rest mass (photons), the use of a free parameter is
required because for them holdsds = 0. Fromδ

∫
ds = 0 the equations of motion can be derived:

d2xα

ds2
+ Γα

βγ

dxβ

ds

dxγ

ds
= 0
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Chapter 3: Relativity 15

2. Theprinciple of equivalence: inertial mass≡ gravitational mass⇒ gravitation is equivalent with a
curved space-time were particles move along geodesics.

3. By a proper choice of the coordinate system it is possible to make the metric locally flat in each point
xi: gαβ(xi) = ηαβ :=diag(−1, 1, 1, 1).

TheRiemann tensoris defined as:Rµ
ναβT

ν := ∇α∇βT
µ−∇β∇αT

µ, where the covariant derivative is given
by∇ja

i = ∂ja
i + Γi

jka
k and∇jai = ∂jai − Γk

ijak. Here,

Γi
jk =

gil

2

(
∂glj

∂xk
+
∂glk

∂xj
− ∂g

jk

∂xl

)
, for Euclidean spaces this reduces to:Γi

jk =
∂2x̄l

∂xj∂xk

∂xi

∂x̄l
,

are theChristoffel symbols. For a second-order tensor holds:[∇α,∇β ]T µ
ν = Rµ

σαβT
σ
ν + Rσ

ναβT
µ
σ , ∇ka

i
j =

∂ka
i
j−Γl

kja
i
l +Γi

kla
l
j ,∇kaij = ∂kaij−Γl

kialj−Γl
kjajl and∇ka

ij = ∂ka
ij +Γi

kla
lj +Γj

kla
il. The following

holds:Rα
βµν = ∂µΓα

βν − ∂νΓα
βµ + Γα

σµΓσ
βν − Γα

σνΓσ
βµ.

TheRicci tensoris a contraction of the Riemann tensor:Rαβ := Rµ
αµβ , which is symmetric:Rαβ = Rβα.

TheBianchi identitiesare:∇λRαβµν +∇νRαβλµ +∇µRαβνλ = 0.

The Einstein tensoris given by: Gαβ := Rαβ − 1
2g

αβR, whereR := Rα
α is the Ricci scalar, for which

holds: ∇βGαβ = 0. With the variational principleδ
∫
(L(gµν) − Rc2/16πκ)

√|g|d4x = 0 for variations
gµν → gµν + δgµν theEinstein field equationscan be derived:

Gαβ =
8πκ
c2

Tαβ , which can also be written asRαβ =
8πκ
c2

(Tαβ − 1
2gαβT

µ
µ )

For empty space this is equivalent toRαβ = 0. The equationRαβµν = 0 has as only solution a flat space.

The Einstein equations are 10 independent equations, which are of second order ingµν . From this, the Laplace
equation from Newtonian gravitation can be derived by stating:gµν = ηµν + hµν , where|h| � 1. In the
stationary case, this results in∇2h00 = 8πκ%/c2.

The most general form of the field equations is:Rαβ − 1
2gαβR+ Λgαβ =

8πκ
c2

Tαβ

whereΛ is thecosmological constant. This constant plays a role in inflatory models of the universe.

3.2.2 The line element

Themetric tensorin an Euclidean space is given by:gij =
∑

k

∂x̄k

∂xi

∂x̄k

∂xj
.

In general holds:ds2 = gµνdx
µdxν . In special relativity this becomesds2 = −c2dt2 + dx2 + dy2 + dz2.

This metric,ηµν :=diag(−1, 1, 1, 1), is called theMinkowski metric.

Theexternal Schwarzschild metricapplies in vacuum outside a spherical mass distribution, and is given by:

ds2 =
(
−1 +

2m
r

)
c2dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2

Here,m := Mκ/c2 is thegeometrical massof an object with massM , anddΩ2 = dθ2 + sin2 θdϕ2. This
metric is singular forr = 2m = 2κM/c2. If an object is smaller than its event horizon2m, that implies that
its escape velocity is> c, it is called ablack hole. The Newtonian limit of this metric is given by:

ds2 = −(1 + 2V )c2dt2 + (1− 2V )(dx2 + dy2 + dz2)

whereV = −κM/r is the Newtonian gravitation potential. In general relativity, the components ofgµν are
associated with the potentials and the derivatives ofgµν with the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near
r = 2m. They are defined by:
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Chapter 4: Oscillations 19

1. Series connection:V = IZ,

Ztot =
∑

i

Zi , Ltot =
∑

i

Li ,
1
Ctot

=
∑

i

1
Ci

, Q =
Z0

R
, Z = R(1 + iQδ)

2. parallel connection:V = IZ,

1
Ztot

=
∑

i

1
Zi

,
1
Ltot

=
∑

i

1
Li

, Ctot =
∑

i

Ci , Q =
R

Z0
, Z =

R

1 + iQδ

Here,Z0 =

√
L

C
andω0 =

1√
LC

.

The power given by a source is given byP (t) = V (t) · I(t), so〈P 〉t = V̂eff Îeff cos(∆φ)
= 1

2 V̂ Î cos(φv − φi) = 1
2 Î

2Re(Z) = 1
2 V̂

2Re(1/Z), wherecos(∆φ) is the work factor.

4.4 Waves in long conductors

These cables are in use for signal transfer, e.g. coax cable. For them holds:Z0 =

√
dL

dx

dx

dC
.

The transmission velocity is given byv =

√
dx

dL

dx

dC
.

4.5 Coupled conductors and transformers

For two coils enclosing each others flux holds: ifΦ12 is the part of the flux originating fromI2 through coil 2
which is enclosed by coil 1, than holdsΦ12 = M12I2, Φ21 = M21I1. For the coefficients of mutual induction
Mij holds:

M12 = M21 := M = k
√
L1L2 =

N1Φ1

I2
=
N2Φ2

I1
∼ N1N2

where0 ≤ k ≤ 1 is thecoupling factor. For a transformer isk ≈ 1. At full load holds:

V1

V2
=
I2
I1

= − iωM

iωL2 +Rload
≈ −

√
L1

L2
= −N1

N2

4.6 Pendulums

The oscillation timeT = 1/f , and for different types of pendulums is given by:

• Oscillating spring:T = 2π
√
m/C if the spring force is given byF = C ·∆l.

• Physical pendulum:T = 2π
√
I/τ with τ the moment of force andI the moment of inertia.

• Torsion pendulum:T = 2π
√
I/κwith κ =

2lm
πr4∆ϕ

the constant of torsion andI the moment of inertia.

• Mathematical pendulum:T = 2π
√
l/g with g the acceleration of gravity andl the length of the pendu-

lum.
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Chapter 5: Waves 23

3. Ez andBz are zero everywhere: the Transversal electromagnetic mode (TEM). Than holds:k =
±ω√εµ andvf = vg, just as if here were no waveguide. Furtherk ∈ IR, so there exists no cut-off
frequency.

In a rectangular, 3 dimensional resonating cavity with edgesa, b andc the possible wave numbers are given

by: kx =
n1π

a
, ky =

n2π

b
, kz =

n3π

c
This results in the possible frequenciesf = vk/2π in the cavity:

f =
v

2

√
n2

x

a2
+
n2

y

b2
+
n2

z

c2

For a cubic cavity, witha = b = c, the possible number of oscillating modesNL for longitudinal waves is
given by:

NL =
4πa3f3

3v3

Because transversal waves have two possible polarizations holds for them:NT = 2NL.

5.6 Non-linear wave equations

TheVan der Polequation is given by:

d2x

dt2
− εω0(1 − βx2)

dx

dt
+ ω2

0x = 0

βx2 can be ignored for very small values of the amplitude. Substitution ofx ∼ eiωt gives: ω = 1
2ω0(iε ±

2
√

1− 1
2ε

2). The lowest-order instabilities grow as12εω0. While x is growing, the 2nd term becomes larger

and diminishes the growth. Oscillations on a time scale∼ ω−1
0 can exist. Ifx is expanded asx = x(0) +

εx(1) + ε2x(2) + · · · and this is substituted one obtains, besides periodic,secular terms∼ εt. If it is assumed
that there exist timescalesτn, 0 ≤ τ ≤ N with ∂τn/∂t = εn and if the secular terms are put 0 one obtains:

d

dt

{
1
2

(
dx

dt

)2

+ 1
2ω

2
0x

2

}
= εω0(1 − βx2)

(
dx

dt

)2

This is an energy equation. Energy is conserved if the left-hand side is 0. Ifx2 > 1/β, the right-hand side
changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth
of oscillations.

TheKorteweg-De Vriesequation is given by:

∂u

∂t
+
∂u

∂x
− au

∂u

∂x︸ ︷︷ ︸
non−lin

+ b2
∂3u

∂x3︸ ︷︷ ︸
dispersive

= 0

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions
of the following form exist:

u(x− ct) =
−d

cosh2(e(x− ct))
with c = 1 + 1

3ad ande2 = ad/(12b2).
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Chapter 7

Statistical physics

7.1 Degrees of freedom

A molecule consisting ofn atoms hass = 3n degrees of freedom. There are 3 translational degrees of freedom,
a linear molecule hass = 3n − 5 vibrational degrees of freedom and a non-linear molecules = 3n − 6. A
linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count double. So,
for linear molecules this results in a total ofs = 6n− 5. For non-linear molecules this givess = 6n− 6. The
average energy of a molecule in thermodynamic equilibrium is〈Etot〉 = 1

2skT . Each degree of freedom of a
molecule has in principle the same energy: theprinciple of equipartition.

The rotational and vibrational energy of a molecule are:

Wrot =
h̄2

2I
l(l+ 1) = Bl(l + 1) , Wvib = (v + 1

2 )h̄ω0

The vibrational levels are excited ifkT ≈ h̄ω, the rotational levels of a hetronuclear molecule are excited if
kT ≈ 2B. For homonuclear molecules additional selection rules apply so the rotational levels are well coupled
if kT ≈ 6B.

7.2 The energy distribution function

The general form of the equilibrium velocity distribution function is
P (vx, vy, vz)dvxdvydvz = P (vx)dvx · P (vy)dvy · P (vz)dvz with

P (vi)dvi =
1

α
√
π

exp
(
− v

2
i

α2

)
dvi

whereα =
√

2kT/m is themost probable velocityof a particle. The average velocity is given by〈v〉 =
2α/
√
π, and

〈
v2
〉

= 3
2α

2. The distribution as a function of the absolute value of the velocity is given by:

dN

dv
=

4N
α3
√
π
v2 exp

(
−mv

2

2kT

)

The general form of the energy distribution function then becomes:

P (E)dE =
c(s)
kT

(
E

kT

) 1
2 s−1

exp
(
− E

kT

)
dE

wherec(s) is a normalization constant, given by:

1. Evens: s = 2l: c(s) =
1

(l − 1)!

2. Odds: s = 2l+ 1: c(s) =
2l

√
π(2l− 1)!!

30
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Chapter 7: Statistical physics 31

7.3 Pressure on a wall

The number of molecules that collides with a wall with surfaceA within a timeτ is given by:

∫∫∫
d3N =

∞∫
0

π∫
0

2π∫
0

nAvτ cos(θ)P (v, θ, ϕ)dvdθdϕ

From this follows for the particle flux on the wall:Φ = 1
4n 〈v〉. For the pressure on the wall then follows:

d3p =
2mv cos(θ)d3N

Aτ
, so p =

2
3
n 〈E〉

7.4 The equation of state

If intermolecular forces and the volume of the molecules can be neglected then for gases fromp = 2
3n 〈E〉

and〈E〉 = 3
2kT can be derived:

pV = nsRT =
1
3
Nm

〈
v2
〉

Here,ns is the number ofmolesparticles andN is the total number of particles within volumeV . If the own
volume and the intermolecular forces cannot be neglected theVan der Waalsequation can be derived:(

p+
an2

s

V 2

)
(V − bns) = nsRT

There is an isotherme with a horizontal point of inflection. In the Van der Waals equation this corresponds
with thecritical temperature, pressureandvolumeof the gas. This is the upper limit of the area of coexistence
between liquid and vapor. Fromdp/dV = 0 andd2p/dV 2 = 0 follows:

Tcr =
8a

27bR
, pcr =

a

27b2
, Vcr = 3bns

For the critical point holds:pcrVm,cr/RTcr = 3
8 , which differs from the value of 1 which follows from the

general gas law.

Scaled on the critical quantities, withp∗ := p/pcr, T ∗ = T/Tcr andV ∗
m = Vm/Vm,cr with Vm := V/ns holds:

(
p∗ +

3
(V ∗

m)2

)(
V ∗

m − 1
3

)
= 8

3T
∗

Gases behave the same for equal values of the reduced quantities: thelaw of the corresponding states. A virial
expansionis used for even more accurate views:

p(T, Vm) = RT

(
1
Vm

+
B(T )
V 2

m

+
C(T )
V 3

m

+ · · ·
)

TheBoyle temperatureTB is the temperature for which the 2nd virial coefficient is 0. In a Van der Waals gas,
this happens atTB = a/Rb. Theinversion temperatureTi = 2TB.

The equation of state for solids and liquids is given by:

V

V0
= 1 + γp∆T − κT ∆p = 1 +

1
V

(
∂V

∂T

)
p

∆T +
1
V

(
∂V

∂p

)
T

∆p
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32 Physics Formulary by ir. J.C.A. Wevers

7.5 Collisions between molecules

The collision probability of a particle in a gas that is translated over a distancedx is given bynσdx, whereσ is

thecross section. The mean free path is given by` =
v1
nuσ

with u =
√
v2
1 + v2

2 the relative velocity between

the particles. Ifm1 � m2 holds:
u

v1
=
√

1 +
m1

m2
, so` =

1
nσ

. If m1 = m2 holds:` =
1

nσ
√

2
. This means

that the average time between two collisions is given byτ =
1
nσv

. If the molecules are approximated by hard

spheres the cross section is:σ = 1
4π(D2

1 +D2
2). The average distance between two molecules is0.55n−1/3.

Collisions between molecules and small particles in a solution result in theBrownian motion. For the average
motion of a particle with radiusR can be derived:

〈
x2

i

〉
= 1

3

〈
r2
〉

= kT t/3πηR.

A gas is called aKnudsen gasif ` � the dimensions of the gas, something that can easily occur at low
pressures. The equilibrium condition for a vessel which has a hole with surfaceA in it for which holds that
`�√

A/π is: n1

√
T1 = n2

√
T2. Together with the general gas law follows:p1/

√
T1 = p2/

√
T2.

If two plates move along each other at a distanced with velocitywx theviscosityη is given by:Fx = η
Awx

d
.

The velocity profile between the plates is in that case given byw(z) = zwx/d. It can be derived thatη =
1
3%` 〈v〉 wherev is thethermal velocity.

The heat conductance in a non-moving gas is described by:
dQ

dt
= κA

(
T2 − T1

d

)
, which results in a temper-

ature profileT (z) = T1 + z(T2−T1)/d. It can be derived thatκ = 1
3CmV n` 〈v〉 /NA. Also holds:κ = CV η.

A better expression forκ can be obtained with theEucken correction: κ = (1 + 9R/4cmV )CV · η with an
error<5%.

7.6 Interaction between molecules

For dipole interaction between molecules can be derived thatU ∼ −1/r6. If the distance between two
molecules approaches the molecular diameterD a repulsing force between the electron clouds appears. This
force can be described byUrep ∼ exp(−γr) or Vrep = +Cs/r

s with 12 ≤ s ≤ 20. This results in the
Lennard-Jonespotential for intermolecular forces:

ULJ = 4ε

[(
D

r

)12

−
(
D

r

)6
]

with a minimumε at r = rm. The following holds:D ≈ 0.89rm. For the Van der Waals coefficientsa andb
and the critical quantities holds:a = 5.275N2

AD
3ε, b = 1.3NAD

3, kTkr = 1.2ε andVm,kr = 3.9NAD
3.

A more simple model for intermolecular forces assumes a potentialU(r) = ∞ for r < D, U(r) = ULJ for
D ≤ r ≤ 3D andU(r) = 0 for r ≥ 3D. This gives for the potential energy of one molecule:Epot =∫ 3D

D

U(r)F (r)dr.

with F (r) the spatial distribution function in spherical coordinates, which for a homogeneous distribution is
given by:F (r)dr = 4nπr2dr.

Some useful mathematical relations are:

∞∫
0

xne−xdx = n! ,

∞∫
0

x2ne−x2
dx =

(2n)!
√
π

n!22n+1
,

∞∫
0

x2n+1e−x2
dx = 1

2n!

Preview from Notesale.co.uk

Page 39 of 107



Chapter 8: Thermodynamics 35

From this one can derive Maxwell’s relations:(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

,

(
∂T

∂p

)
S

=
(
∂V

∂S

)
p

,

(
∂p

∂T

)
V

=
(
∂S

∂V

)
T

,

(
∂V

∂T

)
p

= −
(
∂S

∂p

)
T

From the total differential and the definitions ofCV andCp it can be derived that:

TdS = CV dT + T

(
∂p

∂T

)
V

dV and TdS = CpdT − T
(
∂V

∂T

)
p

dp

For an ideal gas also holds:

Sm = CV ln
(
T

T0

)
+R ln

(
V

V0

)
+ Sm0 and Sm = Cp ln

(
T

T0

)
−R ln

(
p

p0

)
+ S′

m0

Helmholtz’ equations are:(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p ,

(
∂H

∂p

)
T

= V − T
(
∂V

∂T

)
p

for an enlarged surface holds:dWrev = −γdA, with γ the surface tension. From this follows:

γ =
(
∂U

∂A

)
S

=
(
∂F

∂A

)
T

8.6 Processes

Theefficiencyη of a process is given by:η =
Work done
Heat added

TheCold factorξ of a cooling down process is given by:ξ =
Cold delivered
Work added

Reversible adiabatic processes

For adiabatic processes holds:W = U1 − U2. For reversible adiabatic processes holds Poisson’s equation:
with γ = Cp/CV one gets thatpV γ =constant. Also holds:TV γ−1 =constant andT γp1−γ =constant.
Adiabatics exhibit a greater steepnessp-V diagram than isothermics becauseγ > 1.

Isobaric processes

Here holds:H2 −H1 =
∫ 2

1
CpdT . For a reversible isobaric process holds:H2 −H1 = Qrev.

The throttle process

This is also called theJoule-Kelvineffect and is an adiabatic expansion of a gas through a porous material or a
small opening. HereH is a conserved quantity, anddS > 0. In general this is accompanied with a change in
temperature. The quantity which is important here is thethrottle coefficient:

αH =
(
∂T

∂p

)
H

=
1
Cp

[
T

(
∂V

∂T

)
p

− V
]

The inversion temperatureis the temperature where an adiabatically expanding gas keeps the same tempera-
ture. If T > Ti the gas heats up, ifT < Ti the gas cools down.Ti = 2TB, with for TB: [∂(pV )/∂p]T = 0.
The throttle process is e.g. applied in refridgerators.

The Carnotprocess

The system undergoes a reversible cycle with 2 isothemics and 2 adiabatics:

1. Isothermic expansion atT1. The system absorbs a heatQ1 from the reservoir.

2. Adiabatic expansion with a temperature drop toT2.
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74 Physics Formulary by ir. J.C.A. Wevers

This is expressed as:f (j)
κ is the part ofF that transforms according to theκth

¯ row of Γ(j).

F can also be expressed in base functionsϕ: F =
∑
ajκ

cajκϕ
(aj)
κ . The functionsf (j)

κ are in general not

transformed into each other by elements of the group. However, this does happen ifcjaκ = cja.

Theorem: Two wavefunctions transforming according to non-equivalent unitary representations or according
to different rows of an unitary irreducible representation are orthogonal:
〈ϕ(i)

κ |ψ(j)
λ 〉 ∼ δijδκλ, and〈ϕ(i)

κ |ψ(i)
κ 〉 is independent ofκ.

13.3.4 The direct product of representations

Consider a physical system existing of two subsystems. The subspaceD(i) of the system transforms according
to Γ(i). Basefunctions areϕ(i)

κ (~xi), 1 ≤ κ ≤ `i. Now form all `1 × `2 productsϕ(1)
κ (~x1)ϕ

(2)
λ (~x2). These

define a spaceD(1) ⊗D(2).

These product functions transform as:

PR(ϕ(1)
κ (~x1)ϕ

(2)
λ (~x2)) = (PRϕ

(1)
κ (~x1))(PRϕ

(2)
λ (~x2))

In general the spaceD(1) ⊗D(2) can be split up in a number of invariant subspaces:

Γ(1) ⊗ Γ(2) =
∑

i

niΓ(i)

A useful tool for this reduction is that for the characters hold:

χ(1)(R)χ(2)(R) =
∑

i

niχ
(i)(R)

13.3.5 Clebsch-Gordan coefficients

With the reduction of the direct-product matrix w.r.t. the basisϕ
(i)
κ ϕ

(j)
λ one uses a new basisϕ(aκ)

µ . These base
functions lie in subspacesD(ak). The unitary base transformation is given by:

ϕ(ak)
µ =

∑
κλ

ϕ(i)
κ ϕ

(j)
λ (iκjλ|akµ)

and the inverse transformation by:ϕ(i)
κ ϕ

(j)
λ =

∑
akµ

ϕ(aκ)
µ (akµ|iκjλ)

In essence the Clebsch-Gordan coefficients are dot products:(iκjλ|akµ) := 〈ϕ(i)
k ϕ

(j)
λ |ϕ(ak)

µ 〉

13.3.6 Symmetric transformations of operators, irreducible tensor operators

Observables (operators) transform as follows under symmetry transformations:A′ = PRAP
−1
R . If a set of

operatorsA(j)
κ with 0 ≤ κ ≤ `j transform into each other under the transformations ofG holds:

PRA
(j)
κ P−1

R =
∑

ν

A(j)
ν Γ(j)

νκ (R)

If Γ(j) is irreducible they are calledirreducible tensor operatorsA(j) with componentsA(j)
κ .

An operator can also be decomposed into symmetry types:A =
∑
jk

a
(j)
k , with:

a(j)
κ =

(
`j
h

∑
R∈G

Γ(j)∗
κκ (R)

)
(PRAP

−1
R )
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substates which exist independently for protons and neutrons. This gives rise to the so calledmagical numbers:
nuclei where each state in the outermost level are filled are particulary stable. This is the case ifN or Z
∈ {2, 8, 20, 28, 50, 82, 126}.

14.2 The shape of the nucleus

A nucleus is to first approximation spherical with a radius ofR = R0A
1/3. Here,R0 ≈ 1.4 ·10−15 m, constant

for all nuclei. If the nuclear radius is measured including the charge distribution one obtainsR0 ≈ 1.2 · 10−15

m. The shape of oscillating nuclei can be described by spherical harmonics:

R = R0

[
1 +

∑
lm

almY
m
l (θ, ϕ)

]

l = 0 gives rise to monopole vibrations, density vibrations, which can be applied to the theory of neutron stars.
l = 1 gives dipole vibrations,l = 2 quadrupole, witha2,0 = β cos γ anda2,±2 = 1

2

√
2β sin γ whereβ is the

deformation factor andγ the shape parameter. The multipole moment is given byµl = ZerlY m
l (θ, ϕ). The

parity of the electric moment isΠE = (−1)l, of the magnetic momentΠM = (−1)l+1.

There are 2 contributions to the magnetic moment:~ML =
e

2mp

~L and ~MS = gS
e

2mp

~S.

wheregS is thespin-gyromagnetic ratio. For protons holdsgS = 5.5855 and for neutronsgS = −3.8263.
Thez-components of the magnetic moment are given byML,z = µNml andMS,z = gSµNmS . The resulting
magnetic moment is related to the nuclear spinI according to~M = gI(e/2mp)~I . Thez-component is then
Mz = µNgImI .

14.3 Radioactive decay

The number of nuclei decaying is proportional to the number of nuclei:Ṅ = −λN . This gives for the number
of nucleiN : N(t) = N0 exp(−λt). The half life time follows from τ 1

2
λ = ln(2). The average life time

of a nucleus isτ = 1/λ. The probability thatN nuclei decay within a time interval is given by a Poisson
distribution:

P (N)dt = N0
λNe−λ

N !
dt

If a nucleus can decay into more final states then holds:λ =
∑
λi. So the fraction decaying into statei is

λi/
∑
λi. There are 5 types of natural radioactive decay:

1. α-decay: the nucleus emits a He2+ nucleus. Because nucleons tend to order themselves in groups of
2p+2n this can be considered as a tunneling of a He2+ nucleus through a potential barrier. The tunnel
probabilityP is

P =
incoming amplitude
outgoing amplitude

= e−2G with G =
1
h̄

√
2m
∫

[V (r) − E]dr

G is called theGamow factor.

2. β-decay. Here a proton changes into a neutron or vice versa:
p+ → n0 + W+ → n0 + e+ + νe, andn0 → p+ + W− → p+ + e− + νe.

3. Electron capture: here, a proton in the nucleus captures an electron (usually from the K-shell).

4. Spontaneous fission: a nucleus breaks apart.

5. γ-decay: here the nucleus emits a high-energetic photon. The decay constant is given by

λ =
P (l)
h̄ω
∼ Eγ

(h̄c)2

(
EγR

h̄c

)2l

∼ 10−4l

Preview from Notesale.co.uk

Page 89 of 107



Chapter 14: Nuclear physics 83

where l is the quantum number for the angular momentum andP the radiated power. Usually the
decay constant of electric multipole moments is larger than the one of magnetic multipole moments.
The energy of the photon isEγ = Ei − Ef − TR, with TR = E2

γ/2mc
2 the recoil energy, which

can usually be neglected. The parity of the emitted radiation isΠl = Πi · Πf . With I the quantum
number of angular momentum of the nucleus,L = h̄

√
I(I + 1), holds the following selection rule:

|~Ii − ~If | ≤ ∆l ≤ |~Ii + ~If |.

14.4 Scattering and nuclear reactions

14.4.1 Kinetic model

If a beam with intensityI hits a target with densityn and lengthx (Rutherford scattering) the number of
scatteringsR per unit of time is equal toR = Inxσ. From this follows that the intensity of the beam decreases
as−dI = Inσdx. This results inI = I0e−nσx = I0e−µx.

BecausedR = R(θ, ϕ)dΩ/4π = Inxdσ it follows:
dσ

dΩ
=
R(θ, ϕ)
4πnxI

If N particles are scattered in a material with densityn then holds:
∆N
N

= n
dσ

dΩ
∆Ω∆x

For Coulomb collisions holds:
dσ

dΩ

∣∣∣∣
C

=
Z1Z2e

2

8πε0µv2
0

1
sin4(1

2θ)

14.4.2 Quantum mechanical model for n-p scattering

The initial state is a beam of neutrons moving along thez-axis with wavefunctionψinit = eikz and current
densityJinit = v|ψinit|2 = v. At large distances from the scattering point they have approximately a spherical
wavefunctionψscat = f(θ)eikr/r wheref(θ) is thescattering amplitude. The total wavefunction is then given
by

ψ = ψin + ψscat = eikz + f(θ)
eikr

r

The particle flux of the scattered particles isv|ψscat|2 = v|f(θ)|2dΩ. From this it follows thatσ(θ) = |f(θ)|2.
The wavefunction of the incoming particles can be expressed as a sum of angular momentum wavefunctions:

ψinit = eikz =
∑

l

ψl

The impact parameter is related to the angular momentum withL = bp = bh̄k, sobk ≈ l. At very low energy
only particles withl = 0 are scattered, so

ψ = ψ′
0 +

∑
l>0

ψl and ψ0 =
sin(kr)
kr

If the potential is approximately rectangular holds:ψ′
0 = C

sin(kr + δ0)
kr

The cross section is thenσ(θ) =
sin2(δ0)
k2

so σ =
∫
σ(θ)dΩ =

4π sin2(δ0)
k2

At very low energies holds:sin2(δ0) =
h̄2k2/2m
W0 +W

with W0 the depth of the potential well. At higher energies holds:σ =
4π
k2

∑
l

sin2(δl)
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The probability to find a final state with CP= −1 is 1
2 |
〈
K0

2|K0
〉 |2, the probability of CP=+1 decay is

1
2 |
〈
K0

1|K0
〉 |2.

The relation between the mass eigenvalues of the quarks (unaccented) and the fields arising in the weak currents
(accented) is(u′, c′, t′) = (u, c, t), and:

 d′

s′

b′


 =


 1 0 0

0 cos θ2 sin θ2
0 − sin θ2 cos θ2




 1 0 0

0 1 0
0 0 eiδ




 cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1





 1 0 0

0 cos θ3 sin θ3
0 − sin θ3 cos θ3




 d

s
b




θ1 ≡ θC is theCabibbo angle: sin(θC) ≈ 0.23± 0.01.

15.13 The standard model

When one wants to make the Lagrange density which describes a field invariant for local gauge transformations
from a certain group, one has to perform the transformation

∂

∂xµ
→ D

Dxµ
=

∂

∂xµ
− i g

h̄
LkA

k
µ

Here theLk are the generators of the gauge group (the “charges”) and theAk
µ are the gauge fields.g is the

matching coupling constant. The Lagrange density for a scalar field becomes:

L = − 1
2 (DµΦ∗DµΦ +M2Φ∗Φ)− 1

4F
a
µνF

µν
a

and the field tensors are given by:F a
µν = ∂µA

a
ν − ∂νA

a
µ + gcalmA

l
µA

m
ν .

15.13.1 The electroweak theory

The electroweak interaction arises from the necessity to keep the Lagrange density invariant for local gauge
transformations of the group SU(2)⊗U(1). Right- and left-handed spin states are treated different because the
weak interaction does not conserve parity. If a fifth Dirac matrix is defined by:

γ5 := γ1γ2γ3γ4 = −




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




the left- and right- handed solutions of the Dirac equation for neutrino’s are given by:

ψL = 1
2 (1 + γ5)ψ and ψR = 1

2 (1 − γ5)ψ

It appears that neutrino’s are always left-handed while antineutrino’s are always right-handed. Thehypercharge
Y , for quarks given byY = B + S + C + B∗ + T′, is defined by:

Q = 1
2Y + T3

so[Y, Tk] = 0. The group U(1)Y⊗SU(2)T is taken as symmetry group for the electroweak interaction because
the generators of this group commute. The multiplets are classified as follows:

e−R νeL e−L uL d′L uR dR

T 0 1
2

1
2 0 0

T3 0 1
2 − 1

2
1
2 − 1

2 0 0

Y −2 −1 1
3

4
3 − 2

3
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Now, 1 fieldBµ(x) is connected with gauge group U(1) and 3 gauge fields~Aµ(x) are connected with SU(2).
The total Lagrange density (minus the fieldterms) for the electron-fermion field now becomes:

L0,EW = −(ψνe,L, ψeL)γµ

(
∂µ − i g

h̄
~Aµ · (1

2~σ)− 1
2 i
g′

h̄
Bµ · (−1)

)(
ψνe,L

ψeL

)
−

ψeRγ
µ

(
∂µ − 1

2 i
g′

h̄
(−2)Bµ

)
ψeR

Here,12~σ are the generators ofT and−1 and−2 the generators ofY .

15.13.2 Spontaneous symmetry breaking: the Higgs mechanism

All leptons are massless in the equations above. Their mass is probably generated byspontaneous symmetry
breaking. This means that the dynamic equations which describe the system have a symmetry which the ground
state does not have. It is assumed that there exists an isospin-doublet of scalar fieldsΦ with electrical charges
+1 and 0 and potentialV (Φ) = −µ2Φ∗Φ + λ(Φ∗Φ)2. Their antiparticles have charges−1 and 0. The extra
terms inL arising from these fields,LH = (DLµΦ)∗(Dµ

LΦ) − V (Φ), are globally U(1)⊗SU(2) symmetric.
Hence the state with the lowest energy corresponds with the stateΦ∗(x)Φ(x) = v = µ2/2λ =constant.
The field can be written (wereω± andz are Nambu-Goldstone bosons which can be transformed away, and
mφ = µ

√
2) as:

Φ =
(

Φ+

Φ0

)
=
(

iω+

(v + φ− iz)/√2

)
and 〈0|Φ|0〉 =

(
0

v/
√

2

)
Because this expectation value6= 0 the SU(2) symmetry is broken but the U(1) symmetry is not. When the
gauge fields in the resulting Lagrange density are separated one obtains:

W−
µ = 1

2

√
2(A1

µ + iA2
µ) , W+

µ = 1
2

√
2(A1

µ − iA2
µ)

Zµ =
gA3

µ − g′Bµ√
g2 + g′2

≡ A3
µ cos(θW)−Bµ sin(θW)

Aµ =
g′A3

µ + gBµ√
g2 + g′2

≡ A3
µ sin(θW) +Bµ cos(θW)

whereθW is called theWeinberg angle. For this angle holds:sin2(θW) = 0.255 ± 0.010. Relations for the
masses of the field quanta can be obtained from the remaining terms:MW = 1

2vg andMZ = 1
2v
√
g2 + g′2,

and for the elementary charge holds:e =
gg′√
g2 + g′2

= g′ cos(θW) = g sin(θW)

Experimentally it is found thatMW = 80.022± 0.26 GeV/c2 andMZ = 91.187± 0.007 GeV/c2. According
to the weak theory this should be:MW = 83.0± 0.24 GeV/c2 andMZ = 93.8± 2.0 GeV/c2.

15.13.3 Quantumchromodynamics

Coloured particles interact because the Lagrange density is invariant for the transformations of the group SU(3)
of the colour interaction. A distinction can be made between two types of particles:

1. “White” particles: they have no colour charge, the generator~T = 0.

2. “Coloured” particles: the generators~T are 83 × 3 matrices. There exist three colours and three anti-
colours.

The Lagrange density for coloured particles is given by

LQCD = i
∑

k

Ψkγ
µDµΨk +

∑
k,l

ΨkMklΨl − 1
4F

a
µνF

µν
a

The gluons remain massless because this Lagrange density does not contain spinless particles. Because left-
and right- handed quarks now belong to the same multiplet a mass term can be introduced. This term can be
brought in the formMkl = mkδkl.
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The∇-operator

In cartesian coordinates(x, y, z) holds:

~∇ =
∂

∂x
~ex +

∂

∂y
~ey +

∂

∂z
~ez , gradf = ~∇f =

∂f

∂x
~ex +

∂f

∂y
~ey +

∂f

∂z
~ez

div ~a = ~∇ · ~a =
∂ax

∂x
+
∂ay

∂y
+
∂az

∂z
, ∇2f =

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

rot ~a = ~∇× ~a =
(
∂az

∂y
− ∂ay

∂z

)
~ex +

(
∂ax

∂z
− ∂az

∂x

)
~ey +

(
∂ay

∂x
− ∂ax

∂y

)
~ez

In cylinder coordinates(r, ϕ, z) holds:

~∇ =
∂

∂r
~er +

1
r

∂

∂ϕ
~eϕ +

∂

∂z
~ez , gradf =

∂f

∂r
~er +

1
r

∂f

∂ϕ
~eϕ +

∂f

∂z
~ez

div ~a =
∂ar

∂r
+
ar

r
+

1
r

∂aϕ

∂ϕ
+
∂az

∂z
, ∇2f =

∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2
∂2f

∂ϕ2
+
∂2f

∂z2

rot ~a =
(

1
r

∂az

∂ϕ
− ∂aϕ

∂z

)
~er +

(
∂ar

∂z
− ∂az

∂r

)
~eϕ +

(
∂aϕ

∂r
+
aϕ

r
− 1
r

∂ar

∂ϕ

)
~ez

In spherical coordinates(r, θ, ϕ) holds:

~∇ =
∂

∂r
~er +

1
r

∂

∂θ
~eθ +

1
r sin θ

∂

∂ϕ
~eϕ

gradf =
∂f

∂r
~er +

1
r

∂f

∂θ
~eθ +

1
r sin θ

∂f

∂ϕ
~eϕ

div ~a =
∂ar

∂r
+

2ar

r
+

1
r

∂aθ

∂θ
+

aθ

r tan θ
+

1
r sin θ

∂aϕ

∂ϕ

rot ~a =
(

1
r

∂aϕ

∂θ
+

aθ

r tan θ
− 1
r sin θ

∂aθ

∂ϕ

)
~er +

(
1

r sin θ
∂ar

∂ϕ
− ∂aϕ

∂r
− aϕ

r

)
~eθ +(

∂aθ

∂r
+
aθ

r
− 1
r

∂ar

∂θ

)
~eϕ

∇2f =
∂2f

∂r2
+

2
r

∂f

∂r
+

1
r2
∂2f

∂θ2
+

1
r2 tan θ

∂f

∂θ
+

1
r2 sin2 θ

∂2f

∂ϕ2

General orthonormal curvelinear coordinates(u, v, w) can be obtained from cartesian coordinates by the trans-
formation~x = ~x(u, v, w). The unit vectors are then given by:

~eu =
1
h1

∂~x

∂u
, ~ev =

1
h2

∂~x

∂v
, ~ew =

1
h3

∂~x

∂w

where the factorshi set the norm to 1. Then holds:

gradf =
1
h1

∂f

∂u
~eu +

1
h2

∂f

∂v
~ev +

1
h3

∂f

∂w
~ew

div ~a =
1

h1h2h3

(
∂

∂u
(h2h3au) +

∂

∂v
(h3h1av) +

∂

∂w
(h1h2aw)

)

rot ~a =
1

h2h3

(
∂(h3aw)
∂v

− ∂(h2av)
∂w

)
~eu +

1
h3h1

(
∂(h1au)
∂w

− ∂(h3aw)
∂u

)
~ev +

1
h1h2

(
∂(h2av)
∂u

− ∂(h1au)
∂v

)
~ew

∇2f =
1

h1h2h3

[
∂

∂u

(
h2h3

h1

∂f

∂u

)
+

∂

∂v

(
h3h1

h2

∂f

∂v

)
+

∂

∂w

(
h1h2

h3

∂f

∂w

)]

Preview from Notesale.co.uk

Page 106 of 107


