3	Relativity 13								
•	3 1	Special relativity 1							
	5.1	3.1.1 The Lorentz transformation							
		2.1.2 Ded and blue shift							
		2.1.2 Red and Dide shift							
	2.2	5.1.5 The stress-energy tensor and the neid tensor							
	3.2								
		3.2.1 Riemannian geometry, the Einstein tensor							
		3.2.2 The line element							
		3.2.3 Planetary orbits and the perihelion shift							
		3.2.4 The trajectory of a photon							
		3.2.5 Gravitational waves							
		3.2.6 Cosmology							
4	Osci	llations 1							
	4.1	Harmonic oscillations							
	4.2	Mechanic oscillations							
	4.3	Electric oscillations							
	4.4	Waves in long conductors							
	45	Coupled conductors and transformers							
	т.5 Л б	Pandulume							
	4.0								
5	Way								
5	5 1	The wave equation 2							
	5.1	Solutions of the wave equation							
	3.2								
		5.2.1 Plane waves							
		5.2.2 Spherical waves							
		5.2.3 Cylindrical waves							
		5.2.4 The general solution in on a mension							
	5.3	The stationary phase method \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 2							
	5.4	Green function in the initial-value problem.							
	5.5	War set it estated resonating cavities 🕗							
	5 -	1 on Inear wave equation 2.							
6	Optics 24								
	6.1	The bending of light							
	6.2	Paraxial geometrical optics							
		6.2.1 Lenses							
		622 Mirrors							
		6.2.2 Principal planes							
		6.2.4 Magnification							
	62	Magnification							
	0.5								
	6.4								
	6.5	Reflection and transmission							
	6.6	Polarization							
	6.7	Prisms and dispersion							
	6.8	Diffraction							
	6.9	Special optical effects							
	6.10	The Fabry-Perot interferometer							
_	~								
7	Stat	istical physics 3							
	7.1	Degrees of freedom							
	7.2	The energy distribution function							
	7.3	Pressure on a wall							
	7.4	The equation of state							
	7.5	Collisions between molecules							

1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:

$$\vec{L}' = I\vec{\omega} + \vec{L}'_n$$

where I is the moment of inertia with respect to a central axis, which is given by:

$$I = \sum_{i} m_{i} \vec{r_{i}}^{2}; \quad T' = W_{\text{rot}} = \frac{1}{2} \omega I_{ij} \vec{e_{i}} \vec{e_{j}} = \frac{1}{2} I \omega^{2}$$

or, in the continuous case:

$$I = \frac{m}{V} \int {r'}_n^2 dV = \int {r'}_n^2 dm$$

Further holds:

$$L_i = I^{ij}\omega_j$$
; $I_{ii} = I_i$; $I_{ij} = I_{ji} = -\sum_k m_k x'_i x'_j$

Steiner's theorem is: $I_{w.r.t.D} = I_{w.r.t.C} + m(DM)^2$ if axis C || axis D.

Object	Ι	Object	Ι
Cavern cylinder	$I = mR^2$	Massive cylinder	$I = \frac{1}{2}R^2$
Disc, axis in plane disc through m	$I = \frac{1}{4}mR^2$	Halter	$T = \frac{1}{2}\mu R^2$
Cavern sphere	$I = \frac{2}{3}mR^2$	Harry Chhere	$I = \frac{2}{5}mR^2$
Bar, axis \perp through c.o.m.	$I = \frac{1}{2}m$	Bar, axis 1 ar ough end	$I = \frac{1}{3}ml^2$
Rectangle, axis \perp plane thr. co.n.	$= \frac{1}{12}m(a^2+b^2)$	c containing let, axis $\parallel b$ thr. m	$I = ma^2$
62 - Drie Mie	- 13		

1.6.2 Principal axes Each ligid body has (at least) 3 principal axes which stand \perp to each other. For a principal axis holds:

$$\frac{\partial I}{\partial \omega_x} = \frac{\partial I}{\partial \omega_y} = \frac{\partial I}{\partial \omega_z} = 0 \text{ so } L'_n = 0$$

The following holds: $\dot{\omega}_k = -a_{ijk}\omega_i\omega_j$ with $a_{ijk} = \frac{I_i - I_j}{I_k}$ if $I_1 \le I_2 \le I_3$.

1.6.3 Time dependence

For torque of force $\vec{\tau}$ holds:

$$\vec{\tau}' = I\ddot{\theta}; \quad \frac{d''\vec{L}'}{dt} = \vec{\tau}' - \vec{\omega} \times \vec{L}'$$

The torque \vec{T} is defined by: $\vec{T} = \vec{F} \times \vec{d}$.

1.7 Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus

Starting with:

$$\delta \int_{a}^{b} \mathcal{L}(q,\dot{q},t)dt = 0 \text{ with } \delta(a) = \delta(b) = 0 \text{ and } \delta\left(\frac{du}{dx}\right) = \frac{d}{dx}(\delta u)$$

the equations of Lagrange can be derived:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{\partial \mathcal{L}}{\partial q_i}$$

When there are additional conditions applying to the variational problem $\delta J(u) = 0$ of the type K(u) = constant, the new problem becomes: $\delta J(u) - \lambda \delta K(u) = 0$.

1.7.2 Hamilton mechanics

The Lagrangian is given by: $\mathcal{L} = \sum T(\dot{q}_i) - V(q_i)$. The Hamiltonian is given by: $H = \sum \dot{q}_i p_i - \mathcal{L}$. In 2 dimensions holds: $\mathcal{L} = T - U = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) - U(r,\phi)$.

If the used coordinates are *canonical* the Hamilton equations are the equations of motion for the system:

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}; \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

Coordinates are canonical if the following holds: $\{q_i, q_j\} = 0, \{p_i, p_j\} = 0, \{q_i, p_j\} = \delta_{ij}$ where $\{,\}$ is the Poisson bracket:

$$\{A,B\} = \sum_{i} \left[\frac{\partial A}{\partial q_i} \frac{\partial B}{\partial p_i} - \frac{\partial A}{\partial p_i} \frac{\partial B}{\partial q_i} \right]$$

The Hamiltonian of a Harmonic oscillator is given by $H(x,p) = p^2/2m + \frac{1}{2}m\omega^2 x^2$. With new operdinates (θ, I) , obtained by the canonical transformation $x = \sqrt{2I/m\omega}\cos(\theta)$ and $p = -\sqrt{2Im\omega}\sin(\theta)$, when we are $\theta = \arctan(-p/m\omega x)$ and $I = p^2/2m\omega + \frac{1}{2}m\omega x^2$ it follows: $H(\theta, I) = \omega I$.

Hamiltonian can be leaved from the Hamiltonian day free particle $H = p^2/2m$ with the transformations $\vec{r} - \vec{A} = \alpha H \rightarrow H - qV$. This is equal that from a relativistic point of view: this is equivalent to the armation of the momentum 4- \vec{e} to $p^{\alpha} - qA^{\alpha}$. A gauge transformation on the potentials A^{α} This Hamiltonian car les kin transl corresponds with a canonical transformation, which make the Hamilton equations the equations of motion for the system.

Motion around an equilibrium, linearization 1.7.3

For natural systems around equilibrium the following equations are valid:

$$\left(\frac{\partial V}{\partial q_i}\right)_0 = 0; \quad V(q) = V(0) + V_{ik}q_iq_k \text{ with } V_{ik} = \left(\frac{\partial^2 V}{\partial q_i\partial q_k}\right)_0$$

With $T = \frac{1}{2}(M_{ik}\dot{q}_i\dot{q}_k)$ one receives the set of equations $M\ddot{q} + Vq = 0$. If $q_i(t) = a_i \exp(i\omega t)$ is substituted, this set of equations has solutions if $det(V - \omega^2 M) = 0$. This leads to the eigenfrequencies of the problem: $\omega_k^2 = \frac{a_k^{\rm T} V a_k}{a_k^{\rm T} M a_k}$. If the equilibrium is stable holds: $\forall k$ that $\omega_k^2 > 0$. The general solution is a superposition if eigenvibrations.

Phase space, Liouville's equation 1.7.4

In phase space holds:

$$\nabla = \left(\sum_{i} \frac{\partial}{\partial q_{i}}, \sum_{i} \frac{\partial}{\partial p_{i}}\right) \text{ so } \nabla \cdot \vec{v} = \sum_{i} \left(\frac{\partial}{\partial q_{i}} \frac{\partial H}{\partial p_{i}} - \frac{\partial}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right)$$

given by:

 $W^2 = m_0^2 c^4 + p^2 c^2$. $p = m_r v = \gamma m_0 v = W v/c^2$, and $pc = W\beta$ where $\beta = v/c$. The force is defined by $\vec{F} = d\vec{p}/dt.$

4-vectors have the property that their modulus is independent of the observer: their components can change after a coordinate transformation but not their modulus. The difference of two 4-vectors transforms also as a 4-vector. The 4-vector for the velocity is given by $U^{\alpha} = \frac{dx^{\alpha}}{d\tau}$. The relation with the "common" velocity $u^i := dx^i/dt$ is: $U^{\alpha} = (\gamma u^i, ic\gamma)$. For particles with nonzero restmass holds: $U^{\alpha}U_{\alpha} = -c^2$, for particles with zero restmass (so with v = c) holds: $U^{\alpha}U_{\alpha} = 0$. The 4-vector for energy and momentum is given by: $p^{\alpha} = m_0 U^{\alpha} = (\gamma p^i, iW/c)$. So: $p_{\alpha}p^{\alpha} = -m_0^2c^2 = p^2 - W^2/c^2$.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

- 1. Motion: with $\vec{e}_v \cdot \vec{e}_r = \cos(\varphi)$ follows: $\frac{f'}{f} = \gamma \left(1 \frac{v \cos(\varphi)}{c}\right)$. This can give both red- and blueshift, also \perp to the direction of motion.
- 2. Gravitational redshift: $\frac{\Delta f}{f} = \frac{\kappa M}{rc^2}$.
- 3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:

$$\frac{\lambda_0}{\lambda_1} = \frac{R_0}{R_1}.$$

P

The stress-energy tensor and the field tensor 3.1.3

The stress-energy tensor is given by:

$$\frac{\lambda_0}{\lambda_1} = \frac{R_0}{R_1}.$$
3.1.3 The stress-energy tensor and the field tensor
The stress-energy tensor is given by:
$$T_{\mu\nu} = (\varrho c^2 + \varrho) \psi_{\mu\nu} + \frac{1}{c^2} \left(F_{\mu\alpha} E_{\nu}^{\alpha} + \frac{1}{4} g_{\mu\nu} F^{\mu\beta} F_{\alpha\beta} \right)$$
The conservation laws (or tran be written as: $\nabla_{\nu} T^{\mu} = 0$. The electromagnetic field tensor is given by:
$$F_{\alpha\beta} = \frac{\partial A_{\beta}}{\partial x^{\alpha}} - \frac{\partial A_{\alpha}}{\partial x^{\beta}}$$

with $A_{\mu} := (\vec{A}, iV/c)$ and $J_{\mu} := (\vec{J}, ic\rho)$. The Maxwell equations can than be written as:

$$\partial_{\nu}F^{\mu\nu} = \mu_0 J^{\mu} , \ \partial_{\lambda}F_{\mu\nu} + \partial_{\mu}F_{\nu\lambda} + \partial_{\nu}F_{\lambda\mu} = 0$$

The equations of motion for a charged particle in an EM field become with the field tensor:

$$\frac{dp_{\alpha}}{d\tau} = qF_{\alpha\beta}u^{\beta}$$

3.2 General relativity

Riemannian geometry, the Einstein tensor 3.2.1

The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time τ or arc length s as parameter. For particles with zero rest mass (photons), the use of a free parameter is required because for them holds ds = 0. From $\delta \int ds = 0$ the equations of motion can be derived:

$$\frac{d^2x^\alpha}{ds^2} + \Gamma^\alpha_{\beta\gamma} \frac{dx^\beta}{ds} \frac{dx^\gamma}{ds} = 0$$

- 2. The *principle of equivalence*: inertial mass \equiv gravitational mass \Rightarrow gravitation is equivalent with a curved space-time were particles move along geodesics.
- 3. By a proper choice of the coordinate system it is possible to make the metric locally flat in each point $x_i: g_{\alpha\beta}(x_i) = \eta_{\alpha\beta} := \text{diag}(-1, 1, 1, 1).$

The *Riemann tensor* is defined as: $R^{\mu}_{\nu\alpha\beta}T^{\nu} := \nabla_{\alpha}\nabla_{\beta}T^{\mu} - \nabla_{\beta}\nabla_{\alpha}T^{\mu}$, where the covariant derivative is given by $\nabla_{j}a^{i} = \partial_{j}a^{i} + \Gamma^{i}_{jk}a^{k}$ and $\nabla_{j}a_{i} = \partial_{j}a_{i} - \Gamma^{k}_{ij}a_{k}$. Here,

$$\Gamma_{jk}^{i} = \frac{g^{il}}{2} \left(\frac{\partial g_{lj}}{\partial x^{k}} + \frac{\partial g_{lk}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{l}} \right), \text{ for Euclidean spaces this reduces to: } \Gamma_{jk}^{i} = \frac{\partial^{2} \bar{x}^{l}}{\partial x^{j} \partial x^{k}} \frac{\partial x^{i}}{\partial \bar{x}^{l}}$$

are the *Christoffel symbols*. For a second-order tensor holds: $[\nabla_{\alpha}, \nabla_{\beta}]T^{\mu}_{\nu} = R^{\mu}_{\sigma\alpha\beta}T^{\sigma}_{\nu} + R^{\sigma}_{\nu\alpha\beta}T^{\mu}_{\sigma}, \nabla_{k}a^{i}_{j} = \partial_{k}a^{i}_{j} - \Gamma^{l}_{kj}a^{i}_{l} + \Gamma^{i}_{kl}a^{l}_{j}, \nabla_{k}a_{ij} = \partial_{k}a_{ij} - \Gamma^{l}_{ki}a_{lj} - \Gamma^{l}_{kj}a_{jl}$ and $\nabla_{k}a^{ij} = \partial_{k}a^{ij} + \Gamma^{i}_{kl}a^{lj} + \Gamma^{j}_{kl}a^{il}$. The following holds: $R^{\alpha}_{\beta\mu\nu} = \partial_{\mu}\Gamma^{\alpha}_{\beta\nu} - \partial_{\nu}\Gamma^{\alpha}_{\beta\mu} + \Gamma^{\alpha}_{\sigma\mu}\Gamma^{\sigma}_{\beta\nu} - \Gamma^{\alpha}_{\sigma\nu}\Gamma^{\sigma}_{\beta\mu}$.

The *Ricci tensor* is a contraction of the Riemann tensor: $R_{\alpha\beta} := R^{\mu}_{\alpha\mu\beta}$, which is symmetric: $R_{\alpha\beta} = R_{\beta\alpha}$. The *Bianchi identities* are: $\nabla_{\lambda}R_{\alpha\beta\mu\nu} + \nabla_{\nu}R_{\alpha\beta\lambda\mu} + \nabla_{\mu}R_{\alpha\beta\nu\lambda} = 0$.

The Einstein tensor is given by: $G^{\alpha\beta} := R^{\alpha\beta} - \frac{1}{2}g^{\alpha\beta}R$, where $R := R^{\alpha}_{\alpha}$ is the Ricci scalar, for which holds: $\nabla_{\beta}G_{\alpha\beta} = 0$. With the variational principle $\delta \int (\mathcal{L}(g_{\mu\nu}) - Rc^2/16\pi\kappa)\sqrt{|g|}d^4x = 0$ for variations $g_{\mu\nu} \to g_{\mu\nu} + \delta g_{\mu\nu}$ the Einstein field equations can be derived:

$$G_{\alpha\beta} = \frac{8\pi\kappa}{c^2} T_{\alpha\beta}$$
, which can also be written as $R_{\alpha\beta} = \frac{8\pi\kappa}{c^2} (T_{\alpha\beta} - \frac{1}{2}g_{\alpha}T^{\mu}_{\mu})$

For empty space this is equivalent to $R_{\alpha\beta} = 0$. The equation $R_{\alpha\beta} = 0$ is a solution a flat space.

The Einstein equations are 10 independent equations which records condorder in $g_{\mu\nu}$. From this, the Laplace equation from Newtonian gravitation can be relived by stating: $g_{\mu\nu} = \eta_{\mu} + h_{\mu\nu}$, where $|h| \ll 1$. In the stationary case, this results in $\nabla^2 h_{\mu0} = 3\pi \kappa_c/c^2$.

The most general for northe field equations is $R_{\alpha\beta} = r_2 g_{\alpha\beta} R + \Lambda g_{\alpha\beta} = \frac{8\pi\kappa}{c^2} T_{\alpha\beta}$ where Λ is the *cosmological communic*. This constant plays a role in inflatory models of the universe.

3.2.2 The line element

The metric tensor in an Euclidean space is given by: $g_{ij} = \sum_{k} \frac{\partial \bar{x}^k}{\partial x^i} \frac{\partial \bar{x}^k}{\partial x^j}$.

In general holds: $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$. In special relativity this becomes $ds^2 = -c^2dt^2 + dx^2 + dy^2 + dz^2$. This metric, $\eta_{\mu\nu} := \text{diag}(-1, 1, 1, 1)$, is called the *Minkowski metric*.

The external Schwarzschild metric applies in vacuum outside a spherical mass distribution, and is given by:

$$ds^{2} = \left(-1 + \frac{2m}{r}\right)c^{2}dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Here, $m := M\kappa/c^2$ is the geometrical mass of an object with mass M, and $d\Omega^2 = d\theta^2 + \sin^2\theta d\varphi^2$. This metric is singular for $r = 2m = 2\kappa M/c^2$. If an object is smaller than its event horizon 2m, that implies that its escape velocity is > c, it is called a *black hole*. The Newtonian limit of this metric is given by:

$$ds^{2} = -(1+2V)c^{2}dt^{2} + (1-2V)(dx^{2} + dy^{2} + dz^{2})$$

where $V = -\kappa M/r$ is the Newtonian gravitation potential. In general relativity, the components of $g_{\mu\nu}$ are associated with the potentials and the derivatives of $g_{\mu\nu}$ with the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near r = 2m. They are defined by:

1. Series connection: V = IZ,

$$Z_{\text{tot}} = \sum_{i} Z_{i} , \ L_{\text{tot}} = \sum_{i} L_{i} , \ \frac{1}{C_{\text{tot}}} = \sum_{i} \frac{1}{C_{i}} , \ Q = \frac{Z_{0}}{R} , \ Z = R(1 + iQ\delta)$$

2. parallel connection: V = IZ,

$$\frac{1}{Z_{\text{tot}}} = \sum_{i} \frac{1}{Z_{i}} , \quad \frac{1}{L_{\text{tot}}} = \sum_{i} \frac{1}{L_{i}} , \quad C_{\text{tot}} = \sum_{i} C_{i} , \quad Q = \frac{R}{Z_{0}} , \quad Z = \frac{R}{1 + iQ\delta}$$

Here,
$$Z_0 = \sqrt{\frac{L}{C}}$$
 and $\omega_0 = \frac{1}{\sqrt{LC}}$

The power given by a source is given by $P(t) = V(t) \cdot I(t)$, so $\langle P \rangle_t = \hat{V}_{\text{eff}} \hat{I}_{\text{eff}} \cos(\Delta \phi)$ = $\frac{1}{2} \hat{V} \hat{I} \cos(\phi_v - \phi_i) = \frac{1}{2} \hat{I}^2 \text{Re}(Z) = \frac{1}{2} \hat{V}^2 \text{Re}(1/Z)$, where $\cos(\Delta \phi)$ is the work factor.

Waves in long conductors 4.4

These cables are in use for signal transfer, e.g. coax cable. For them holds: $Z_0 = \sqrt{\frac{dL}{dx} \frac{dx}{dC}}$.

The transmission velocity is given by $v = \sqrt{\frac{dx}{dL}\frac{dx}{dC}}$.

4.5

Coupled conductors and transformers senclosed by which the sence of th For two coils enclosing each others flux holds: if Φ_1 is the car of the flux cas nating from I_2 through coil 2 which is enclosed by coil 1, than holds $\Phi_1 = N_{12}I_2$, $\Phi_{21} = M_{22}I_1$, and the coefficients of mutual induction M_{ij} holds:

where
$$0 \le k \le 1$$
 is the *coupling factor* for a transformer is $k \approx 1$. At full load holds

there
$$0 \leq k \leq 1$$
 is the coupling factor. For a transformer is $k pprox 1$. At full load holds:

$$\frac{V_1}{V_2} = \frac{I_2}{I_1} = -\frac{i\omega M}{i\omega L_2 + R_{\text{load}}} \approx -\sqrt{\frac{L_1}{L_2}} = -\frac{N_1}{N_2}$$

Pendulums 4.6

The oscillation time T = 1/f, and for different types of pendulums is given by:

- Oscillating spring: $T = 2\pi \sqrt{m/C}$ if the spring force is given by $F = C \cdot \Delta l$.
- Physical pendulum: $T = 2\pi \sqrt{I/\tau}$ with τ the moment of force and I the moment of inertia.
- Torsion pendulum: $T = 2\pi \sqrt{I/\kappa}$ with $\kappa = \frac{2lm}{\pi r^4 \Delta \varphi}$ the constant of torsion and I the moment of inertia.
- Mathematical pendulum: $T = 2\pi \sqrt{l/g}$ with g the acceleration of gravity and l the length of the pendulum.

3. E_z and B_z are zero everywhere: the Transversal electromagnetic mode (TEM). Than holds: $k = \pm \omega \sqrt{\varepsilon \mu}$ and $v_f = v_g$, just as if here were no waveguide. Further $k \in I\!\!R$, so there exists no cut-off frequency.

In a rectangular, 3 dimensional resonating cavity with edges a, b and c the possible wave numbers are given by: $k_x = \frac{n_1 \pi}{a}$, $k_y = \frac{n_2 \pi}{b}$, $k_z = \frac{n_3 \pi}{c}$ This results in the possible frequencies $f = vk/2\pi$ in the cavity:

$$f = \frac{v}{2}\sqrt{\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2}}$$

For a cubic cavity, with a = b = c, the possible number of oscillating modes $N_{\rm L}$ for longitudinal waves is given by:

$$N_{\rm L} = \frac{4\pi a^3 f^3}{3v^3}$$

Because transversal waves have two possible polarizations holds for them: $N_{\rm T} = 2N_{\rm L}$.

5.6 Non-linear wave equations

The Van der Pol equation is given by:

$$\frac{d^2x}{dt^2} - \varepsilon \omega_0 (1 - \beta x^2) \frac{dx}{dt} + \omega_0^2 x = 0$$

 βx^2 can be ignored for very small values of the amplitude. Substitution of $x = e^{iw}$ gives: $\omega = \frac{1}{2}\omega_0(i\varepsilon \pm 2\sqrt{1-\frac{1}{2}\varepsilon^2})$. The lowest-order instabilities grow as $\frac{1}{2}\varepsilon\omega_0$. While x is going, the 2nd term becomes larger and diminishes the growth. Oscillations on a time trace ω_0 can exist. If x is expanded as $x = x^{(0)} + \varepsilon x^{(1)} + \varepsilon^2 x^{(2)} + \cdots$ and this is substituted an obtains, oesides periodic, se where terms $\sim \varepsilon t$. If it is assumed that there exist timescales τ_n , $0 \le v \le 0$ with $\partial \tau_n / \partial t = \varepsilon^n$ and if the second terms are put 0 one obtains:

previe
$$\frac{d}{dt} \begin{cases} 1}{2} \left(\frac{dx}{dt} \right)^2 \mathbf{Q} \omega_0^2 x^2 \end{cases} = \varepsilon \omega_0 (1 - \beta x^2) \left(\frac{dx}{dt} \right)^2$$

This is an energy equation. Energy is conserved if the left-hand side is 0. If $x^2 > 1/\beta$, the right-hand side changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth of oscillations.

The Korteweg-De Vries equation is given by:

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} - \underbrace{au\frac{\partial u}{\partial x}}_{\text{non-lin}} + \underbrace{b^2 \frac{\partial^3 u}{\partial x^3}}_{\text{dispersive}} = 0$$

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions of the following form exist:

$$u(x - ct) = \frac{-a}{\cosh^2(e(x - ct))}$$

with $c = 1 + \frac{1}{3}ad$ and $e^2 = ad/(12b^2)$.

Chapter 7

Statistical physics

7.1 **Degrees of freedom**

A molecule consisting of n atoms has s = 3n degrees of freedom. There are 3 translational degrees of freedom, a linear molecule has s = 3n - 5 vibrational degrees of freedom and a non-linear molecule s = 3n - 6. A linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count double. So, for linear molecules this results in a total of s = 6n - 5. For non-linear molecules this gives s = 6n - 6. The average energy of a molecule in thermodynamic equilibrium is $\langle E_{tot} \rangle = \frac{1}{2} skT$. Each degree of freedom of a molecule has in principle the same energy: the principle of equipartition.

The rotational and vibrational energy of a molecule are:

$$W_{\rm rot} = \frac{\hbar^2}{2I} l(l+1) = Bl(l+1), \ W_{\rm vib} = (v+\frac{1}{2})\hbar\omega_0$$

The vibrational levels are excited if $kT \approx \hbar \omega$, the rotational levels of a net our lear molecule are excited if $kT \approx 2B$. For homonuclear molecules additional selection rules from the rotational levels are well coupled if $kT \approx 6B$. if $kT \approx 6B$.

7.2 The energy distribution function Of The general number of the equilibration gover distribution function is $P(v_x, v_y, v_z) dv_x dv_y dv_z = P(w) dw = P(w) dw = P(w) dw$ $P(v_x, v_y, v_z) dv_x dv_y dv_z = P(v_y) dv_x \cdot P(v_y) dv_y \cdot P(v_z) dv_z$ with

$$P(v_i)dv_i = \frac{1}{\alpha\sqrt{\pi}}\exp\left(-\frac{v_i^2}{\alpha^2}\right)dv_i$$

where $\alpha = \sqrt{2kT/m}$ is the most probable velocity of a particle. The average velocity is given by $\langle v \rangle = 2\alpha/\sqrt{\pi}$, and $\langle v^2 \rangle = \frac{3}{2}\alpha^2$. The distribution as a function of the absolute value of the velocity is given by:

$$\frac{dN}{dv} = \frac{4N}{\alpha^3 \sqrt{\pi}} v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$

The general form of the energy distribution function then becomes:

$$P(E)dE = \frac{c(s)}{kT} \left(\frac{E}{kT}\right)^{\frac{1}{2}s-1} \exp\left(-\frac{E}{kT}\right) dE$$

where c(s) is a normalization constant, given by:

- 1. Even s: s = 2l: $c(s) = \frac{1}{(l-1)!}$
- 2. Odd s: s = 2l + 1: $c(s) = \frac{2^l}{\sqrt{\pi}(2l-1)!!}$

7.3 Pressure on a wall

The number of molecules that collides with a wall with surface A within a time τ is given by:

$$\iiint d^3N = \int_0^\infty \int_0^\pi \int_0^{2\pi} nAv\tau \cos(\theta) P(v,\theta,\varphi) dv d\theta d\varphi$$

From this follows for the particle flux on the wall: $\Phi = \frac{1}{4}n \langle v \rangle$. For the pressure on the wall then follows:

$$d^3p = \frac{2mv\cos(\theta)d^3N}{A\tau}$$
, so $p = \frac{2}{3}n\langle E \rangle$

7.4 The equation of state

If intermolecular forces and the volume of the molecules can be neglected then for gases from $p = \frac{2}{3}n \langle E \rangle$ and $\langle E \rangle = \frac{3}{2}kT$ can be derived:

$$pV = n_s RT = \frac{1}{3} Nm \left\langle v^2 \right\rangle$$

Here, n_s is the number of *moles* particles and N is the total number of particles within volume V. If the own volume and the intermolecular forces cannot be neglected the *Van der Waals* equation can be derived.

$$\left(p+\frac{an_s^2}{V^2}\right)(V-bn_s)=6.5316$$

There is an isotherme with a horizontal point on inflection. In the Var eet Whals equation this corresponds with the *critical temperature*, pressure a divolume of the gas. This is the upper limit of the area of coexistence between liquid and var p, both dp/dV = 0 and $d^2 p/dv^2 = 0$ follows:

$$\mathbf{Prop}_{cr} \mathbf{Q}_{27bR}, \ p_{cr} = \frac{a}{27b^2}, \ V_{cr} = 3bn_s$$

For the critical point holds: $p_{\rm cr}V_{m,{\rm cr}}/RT_{\rm cr} = \frac{3}{8}$, which differs from the value of 1 which follows from the general gas law.

Scaled on the critical quantities, with $p^* := p/p_{cr}$, $T^* = T/T_{cr}$ and $V_m^* = V_m/V_{m,cr}$ with $V_m := V/n_s$ holds:

$$\left(p^* + \frac{3}{(V_m^*)^2}\right)\left(V_m^* - \frac{1}{3}\right) = \frac{8}{3}T^*$$

Gases behave the same for equal values of the reduced quantities: the *law of the corresponding states*. A *virial expansion* is used for even more accurate views:

$$p(T, V_m) = RT\left(\frac{1}{V_m} + \frac{B(T)}{V_m^2} + \frac{C(T)}{V_m^3} + \cdots\right)$$

The *Boyle temperature* $T_{\rm B}$ is the temperature for which the 2nd virial coefficient is 0. In a Van der Waals gas, this happens at $T_{\rm B} = a/Rb$. The *inversion temperature* $T_{\rm i} = 2T_{\rm B}$.

The equation of state for solids and liquids is given by:

$$\frac{V}{V_0} = 1 + \gamma_p \Delta T - \kappa_T \Delta p = 1 + \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p \Delta T + \frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T \Delta p$$

7.5 **Collisions between molecules**

The collision probability of a particle in a gas that is translated over a distance dx is given by $n\sigma dx$, where σ is the cross section. The mean free path is given by $\ell = \frac{v_1}{nu\sigma}$ with $u = \sqrt{v_1^2 + v_2^2}$ the relative velocity between the particles. If $m_1 \ll m_2$ holds: $\frac{u}{v_1} = \sqrt{1 + \frac{m_1}{m_2}}$, so $\ell = \frac{1}{n\sigma}$. If $m_1 = m_2$ holds: $\ell = \frac{1}{n\sigma\sqrt{2}}$. This means that the average time between two collisions is given by $\tau = \frac{1}{n\sigma v}$. If the molecules are approximated by hard spheres the cross section is: $\sigma = \frac{1}{4}\pi (D_1^2 + D_2^2)$. The average distance between two molecules is $0.55n^{-1/3}$. Collisions between molecules and small particles in a solution result in the Brownian motion. For the average motion of a particle with radius R can be derived: $\langle x_i^2 \rangle = \frac{1}{3} \langle r^2 \rangle = kTt/3\pi\eta R$.

A gas is called a Knudsen gas if $\ell \gg$ the dimensions of the gas, something that can easily occur at low pressures. The equilibrium condition for a vessel which has a hole with surface A in it for which holds that $\ell \gg \sqrt{A/\pi}$ is: $n_1\sqrt{T_1} = n_2\sqrt{T_2}$. Together with the general gas law follows: $p_1/\sqrt{T_1} = p_2/\sqrt{T_2}$.

If two plates move along each other at a distance d with velocity w_x the viscosity η is given by: $F_x = \eta \frac{Aw_x}{d}$. The velocity profile between the plates is in that case given by $w(z) = zw_x/d$. It can be derived that $\eta =$ $\frac{1}{3}\varrho\ell \langle v \rangle$ where v is the *thermal velocity*.

The heat conductance in a non-moving gas is described by: $\frac{dQ}{dt} = \kappa A\left(\frac{T_2 - T_1}{d}\right)$, which results in a temperature profile $T(z) = T_1 + z(T_2 - T_1)/d$. It can be derived that $\kappa = \frac{1}{3}C_{mV}n\ell \langle v \rangle /N_A$. Also held: $C_V \eta$. A better expression for κ can be obtained with the *Eucken correction*: $\kappa = (1 + 9P/4_{\pi})/(1 + 1)$

For dipole interaction between molecules can be derived that $d \sim -1/r^6$. If the distance between two molecules approaches D in blocular diameter D a repussing force between the electron clouds appears. This force can be 0 stabled by $U_{\text{rep}} \approx \exp(\gamma k_{\text{rep}}) = +C_s/r^s$ with $12 \leq s \leq 20$. This results in the Lenne *d*-Janes potential for interval 0 due proces:

$$U_{\rm LJ} = 4\epsilon \left[\left(\frac{D}{r}\right)^{12} - \left(\frac{D}{r}\right)^6 \right]$$

with a minimum ϵ at $r = r_{\rm m}$. The following holds: $D \approx 0.89 r_{\rm m}$. For the Van der Waals coefficients a and b and the critical quantities holds: $a = 5.275 N_A^2 D^3 \epsilon$, $b = 1.3 N_A D^3$, $kT_{\rm kr} = 1.2\epsilon$ and $V_{\rm m,kr} = 3.9 N_A D^3$.

A more simple model for intermolecular forces assumes a potential $U(r) = \infty$ for r < D, $U(r) = U_{LJ}$ for $D \leq r \leq 3D$ and U(r) = 0 for $r \geq 3D$. This gives for the potential energy of one molecule: $E_{\rm pot} =$ U(r)F(r)dr.

with F(r) the spatial distribution function in spherical coordinates, which for a homogeneous distribution is given by: $F(r)dr = 4n\pi r^2 dr$.

Some useful mathematical relations are:

$$\int_{0}^{\infty} x^{n} e^{-x} dx = n! , \quad \int_{0}^{\infty} x^{2n} e^{-x^{2}} dx = \frac{(2n)!\sqrt{\pi}}{n!2^{2n+1}} , \quad \int_{0}^{\infty} x^{2n+1} e^{-x^{2}} dx = \frac{1}{2}n!$$

From this one can derive Maxwell's relations:

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V}, \quad \left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}, \quad \left(\frac{\partial p}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}, \quad \left(\frac{\partial V}{\partial T}\right)_{p} = -\left(\frac{\partial S}{\partial p}\right)_{T}$$

From the total differential and the definitions of C_V and C_p it can be derived that:

$$TdS = C_V dT + T\left(\frac{\partial p}{\partial T}\right)_V dV$$
 and $TdS = C_p dT - T\left(\frac{\partial V}{\partial T}\right)_p dp$

For an ideal gas also holds:

$$S_m = C_V \ln\left(\frac{T}{T_0}\right) + R \ln\left(\frac{V}{V_0}\right) + S_{m0} \text{ and } S_m = C_p \ln\left(\frac{T}{T_0}\right) - R \ln\left(\frac{p}{p_0}\right) + S'_{m0}$$

Helmholtz' equations are:

$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial p}{\partial T}\right)_V - p \ , \ \left(\frac{\partial H}{\partial p}\right)_T = V - T \left(\frac{\partial V}{\partial T}\right)_T$$

for an enlarged surface holds: $dW_{rev} = -\gamma dA$, with γ the surface tension. From this follows:

$$\gamma = \left(\frac{\partial U}{\partial A}\right)_{S} = \left(\frac{\partial F}{\partial A}\right)_{T}$$
$$\eta = \frac{\text{Work done}}{\text{Heat Wided}} \textbf{1eSale.CO.UK}$$

8.6 Processes

Reversible adiabati

The *efficiency* η of a process is given by: $\eta = \frac{\text{Work done}}{\text{Heat and done}}$

The *Cold factor* ξ of a cooling down or cet s is given by: $\xi =$

For a point pocesses holds: $p = C_1 O_2$. For reversible adiabatic processes holds Poisson's equation: with $\gamma = C_p/C_V$ one gets that pV =constant. Also holds: $TV^{\gamma-1}$ =constant and $T^{\gamma}p^{1-\gamma}$ =constant. Adiabatics exhibit a greater steepness p-V diagram than isothermics because $\gamma > 1$.

Isobaric processes

Here holds: $H_2 - H_1 = \int_1^2 C_p dT$. For a reversible isobaric process holds: $H_2 - H_1 = Q_{rev}$.

The throttle process

This is also called the *Joule-Kelvin* effect and is an adiabatic expansion of a gas through a porous material or a small opening. Here H is a conserved quantity, and dS > 0. In general this is accompanied with a change in temperature. The quantity which is important here is the *throttle coefficient*:

$$\alpha_H = \left(\frac{\partial T}{\partial p}\right)_H = \frac{1}{C_p} \left[T \left(\frac{\partial V}{\partial T}\right)_p - V \right]$$

The *inversion temperature* is the temperature where an adiabatically expanding gas keeps the same temperature. If $T > T_i$ the gas heats up, if $T < T_i$ the gas cools down. $T_i = 2T_B$, with for T_B : $[\partial(pV)/\partial p]_T = 0$. The throttle process is e.g. applied in refridgerators.

The Carnotprocess

The system undergoes a reversible cycle with 2 isothemics and 2 adiabatics:

- 1. Isothermic expansion at T_1 . The system absorbs a heat Q_1 from the reservoir.
- 2. Adiabatic expansion with a temperature drop to T_2 .

This is expressed as: $f_{\kappa}^{(j)}$ is the part of F that transforms according to the $\kappa^{\underline{\mathbf{h}}}$ row of $\Gamma^{(j)}$.

F can also be expressed in base functions φ : $F = \sum_{aj\kappa} c_{aj\kappa} \varphi_{\kappa}^{(aj)}$. The functions $f_{\kappa}^{(j)}$ are in general not transformed into each other by elements of the group. However, this does happen if $c_{ja\kappa} = c_{ja}$.

<u>Theorem:</u> Two wavefunctions transforming according to non-equivalent unitary representations or according to different rows of an unitary irreducible representation are orthogonal: $\langle \varphi_{\kappa}^{(i)} | \psi_{\lambda}^{(j)} \rangle \sim \delta_{ij} \delta_{\kappa\lambda}$, and $\langle \varphi_{\kappa}^{(i)} | \psi_{\kappa}^{(i)} \rangle$ is independent of κ .

13.3.4 The direct product of representations

Consider a physical system existing of two subsystems. The subspace $D^{(i)}$ of the system transforms according to $\Gamma^{(i)}$. Basefunctions are $\varphi_{\kappa}^{(i)}(\vec{x}_i)$, $1 \leq \kappa \leq \ell_i$. Now form all $\ell_1 \times \ell_2$ products $\varphi_{\kappa}^{(1)}(\vec{x}_1)\varphi_{\lambda}^{(2)}(\vec{x}_2)$. These define a space $D^{(1)} \otimes D^{(2)}$.

These product functions transform as:

$$P_R(\varphi_{\kappa}^{(1)}(\vec{x}_1)\varphi_{\lambda}^{(2)}(\vec{x}_2)) = (P_R\varphi_{\kappa}^{(1)}(\vec{x}_1))(P_R\varphi_{\lambda}^{(2)}(\vec{x}_2))$$

In general the space $D^{(1)} \otimes D^{(2)}$ can be split up in a number of invariant subspaces:

$$\Gamma^{(1)} \otimes \Gamma^{(2)} = \sum_{i} n_{i} \Gamma^{(i)}$$

t for the characters hold:
$$\chi^{(1)}(R)\chi^{(2)}(R) = \sum_{i} i \cdot r^{(i)} \stackrel{(2)}{=} \stackrel{(2$$

A useful tool for this reduction is that for the characters hold:

13.3.5 Clebsch-Gordan clefficens

With the reduction path of the product matrix w.r. The basis $\varphi_{\kappa}^{(i)}\varphi_{\lambda}^{(j)}$ one uses a new basis $\varphi_{\mu}^{(a\kappa)}$. These base functions the cost spaces $D^{(a\kappa)}$. The relative transformation is given by:

$$\phi^{(i)} = \sum_{\kappa\lambda} \varphi^{(i)}_{\kappa} \varphi^{(j)}_{\lambda} (i\kappa j\lambda | ak\mu)$$

and the inverse transformation by: $\varphi_{\kappa}^{(i)}\varphi_{\lambda}^{(j)} = \sum_{ak\mu}\varphi_{\mu}^{(a\kappa)}(ak\mu|i\kappa j\lambda)$

In essence the Clebsch-Gordan coefficients are dot products: $(i\kappa j\lambda|ak\mu) := \langle \varphi_k^{(i)}\varphi_\lambda^{(j)}|\varphi_\mu^{(ak)}\rangle$

13.3.6 Symmetric transformations of operators, irreducible tensor operators

Observables (operators) transform as follows under symmetry transformations: $A' = P_R A P_R^{-1}$. If a set of operators $A_{\kappa}^{(j)}$ with $0 \le \kappa \le \ell_j$ transform into each other under the transformations of \mathcal{G} holds:

$$P_R A_{\kappa}^{(j)} P_R^{-1} = \sum_{\nu} A_{\nu}^{(j)} \Gamma_{\nu\kappa}^{(j)}(R)$$

If $\Gamma^{(j)}$ is irreducible they are called *irreducible tensor operators* $A^{(j)}$ with components $A^{(j)}_{\kappa}$.

An operator can also be decomposed into symmetry types: $A = \sum_{ik} a_k^{(j)}$, with:

$$a_{\kappa}^{(j)} = \left(\frac{\ell_j}{h} \sum_{R \in \mathcal{G}} \Gamma_{\kappa\kappa}^{(j)*}(R)\right) (P_R A P_R^{-1})$$

substates which exist independently for protons and neutrons. This gives rise to the so called magical numbers: nuclei where each state in the outermost level are filled are particularly stable. This is the case if N or Z $\in \{2, 8, 20, 28, 50, 82, 126\}.$

14.2 The shape of the nucleus

A nucleus is to first approximation spherical with a radius of $R = R_0 A^{1/3}$. Here, $R_0 \approx 1.4 \cdot 10^{-15}$ m, constant for all nuclei. If the nuclear radius is measured including the charge distribution one obtains $R_0 \approx 1.2 \cdot 10^{-15}$ m. The shape of oscillating nuclei can be described by spherical harmonics:

$$R = R_0 \left[1 + \sum_{lm} a_{lm} Y_l^m(\theta, \varphi) \right]$$

l = 0 gives rise to monopole vibrations, density vibrations, which can be applied to the theory of neutron stars. l = 1 gives dipole vibrations, l = 2 quadrupole, with $a_{2,0} = \beta \cos \gamma$ and $a_{2,\pm 2} = \frac{1}{2}\sqrt{2}\beta \sin \gamma$ where β is the deformation factor and γ the shape parameter. The multipole moment is given by $\mu_l = Zer^l Y_l^m(\theta, \varphi)$. The parity of the electric moment is $\Pi_E = (-1)^l$, of the magnetic moment $\Pi_M = (-1)^{l+1}$.

There are 2 contributions to the magnetic moment: $\vec{M}_L = \frac{e}{2m_p}\vec{L}$ and $\vec{M}_S = g_S \frac{e}{2m_p}\vec{S}$.

where g_S is the spin-gyromagnetic ratio. For protons holds $g_S = 5.5855$ and for neutrons $g_S = -3.8263$. The z-components of the magnetic moment are given by $M_{L,z} = \mu_N m_l$ and $M_{S,z} = g_S \mu_N m_S$. The esulting magnetic moment is related to the nuclear spin I according to $\vec{M} = g_I (e/2m_{\rm p})\vec{I}$. The combinant is then Notesale.c $M_z = \mu_N g_I m_I.$

14.3 **Radioactive decay**

The number of nuclei decaying is read to the number of the clei: $-\lambda N$. This gives for the number $\tau_{1} = -\lambda t_{1}$. This gives for the number $\tau_{1} = -\lambda t_{2}$. This gives for the number $\tau_{1} = -\lambda t_{2}$. The average life time of nuclei N: N(t) = cThe probability P_N Clei decay within a time interval is given by a Poisson distri $P(N)dt = N_0 \frac{\lambda^N e^{-\lambda}}{N!} dt$

If a nucleus can decay into more final states then holds:
$$\lambda = \sum \lambda_i$$
. So the fraction decaying into state *i* is $\lambda_i / \sum \lambda_i$. There are 5 types of natural radioactive decay:

1. α -decay: the nucleus emits a He²⁺ nucleus. Because nucleons tend to order themselves in groups of 2p+2n this can be considered as a tunneling of a He²⁺ nucleus through a potential barrier. The tunnel probability P is

$$P = \frac{\text{incoming amplitude}}{\text{outgoing amplitude}} = e^{-2G} \text{ with } G = \frac{1}{\hbar} \sqrt{2m \int [V(r) - E] dr}$$

G is called the Gamow factor.

- 2. β -decay. Here a proton changes into a neutron or vice versa: $p^+ \rightarrow n^0 + W^+ \rightarrow n^0 + e^+ + \nu_e$, and $n^0 \rightarrow p^+ + W^- \rightarrow p^+ + e^- + \overline{\nu}_e$.
- 3. Electron capture: here, a proton in the nucleus captures an electron (usually from the K-shell).
- 4. Spontaneous fission: a nucleus breaks apart.
- 5. γ -decay: here the nucleus emits a high-energetic photon. The decay constant is given by

$$\lambda = \frac{P(l)}{\hbar\omega} \sim \frac{E_{\gamma}}{(\hbar c)^2} \left(\frac{E_{\gamma}R}{\hbar c}\right)^{2l} \sim 10^{-4l}$$

where l is the quantum number for the angular momentum and P the radiated power. Usually the decay constant of electric multipole moments is larger than the one of magnetic multipole moments. The energy of the photon is $E_{\gamma} = E_i - E_f - T_{\rm R}$, with $T_{\rm R} = E_{\gamma}^2/2mc^2$ the recoil energy, which can usually be neglected. The parity of the emitted radiation is $\Pi^{l} = \Pi^{i} \cdot \Pi^{f}$. With I the quantum number of angular momentum of the nucleus, $L = \hbar \sqrt{I(I+1)}$, holds the following selection rule: $|\vec{I_i} - \vec{I_f}| \le \Delta l \le |\vec{I_i} + \vec{I_f}|.$

14.4 Scattering and nuclear reactions

14.4.1 **Kinetic model**

If a beam with intensity I hits a target with density n and length x (Rutherford scattering) the number of scatterings R per unit of time is equal to $R = Inx\sigma$. From this follows that the intensity of the beam decreases as $-dI = In\sigma dx$. This results in $I = I_0 e^{-n\sigma x} = I_0 e^{-\mu x}$.

Because
$$dR = R(\theta, \varphi) d\Omega / 4\pi = Inx d\sigma$$
 it follows: $\frac{d\sigma}{d\Omega} = \frac{R(\theta, \varphi)}{4\pi nx I}$

If N particles are scattered in a material with density n then holds: $\frac{\Delta N}{N} = n \frac{d\sigma}{d\Omega} \Delta \Omega \Delta x$

For Coulomb collisions holds: $\left. \frac{d\sigma}{d\Omega} \right|_C = \frac{Z_1 Z_2 e^2}{8\pi\varepsilon_0 \mu v_0^2} \frac{1}{\sin^4(\frac{1}{2}\theta)}$

14.4.2

Quantum mechanical model for n-p scattering all e . Co. UK I state is a beam of neutrons moving along the scattering all $\psi_{init}|^2 - \infty$ to The initial state is a beam of neutrons moving along the e-xxx with wavefunction $\psi_{\text{init}} = e^{ikz}$ and current density $J_{\text{init}} = v |\psi_{\text{init}}|^2 = v$. At large distances from the scattering point by tave approximately a spherical wavefunction $\psi_{\text{scat}} = f(\theta)e^{ikr}/r^2$ where $\theta(\theta)$ is the scattering a militude. The total wavefunction is then given by

Prev
$$\varphi_{\text{scat}} = e^{ikz} + f(\theta) \frac{e^{ikr}}{r}$$

The particle flux of the scattered particles is $v|\psi_{\text{scat}}|^2 = v|f(\theta)|^2 d\Omega$. From this it follows that $\sigma(\theta) = |f(\theta)|^2$. The wavefunction of the incoming particles can be expressed as a sum of angular momentum wavefunctions:

$$\psi_{\text{init}} = e^{ikz} = \sum_{l} \psi_l$$

The impact parameter is related to the angular momentum with $L = bp = b\hbar k$, so $bk \approx l$. At very low energy only particles with l = 0 are scattered, so

$$\psi = \psi'_0 + \sum_{l>0} \psi_l$$
 and $\psi_0 = \frac{\sin(kr)}{kr}$

If the potential is approximately rectangular holds: $\psi'_0 = C \frac{\sin(kr + \delta_0)}{kr}$

The cross section is then $\sigma(\theta) = \frac{\sin^2(\delta_0)}{k^2}$ so $\sigma = \int \sigma(\theta) d\Omega = \frac{4\pi \sin^2(\delta_0)}{k^2}$

At very low energies holds: $\sin^2(\delta_0) = \frac{\hbar^2 k^2 / 2m}{W_0 + W}$

with W_0 the depth of the potential well. At higher energies holds: $\sigma = \frac{4\pi}{k^2} \sum_{l} \sin^2(\delta_l)$

The probability to find a final state with CP= -1 is $\frac{1}{2}|\langle K_2^0|K^0\rangle|^2$, the probability of CP=+1 decay is $\frac{1}{2}|\langle K_1^0|K^0\rangle|^2$.

The relation between the mass eigenvalues of the quarks (unaccented) and the fields arising in the weak currents (accented) is (u', c', t') = (u, c, t), and:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_2 & \sin\theta_2 \\ 0 & -\sin\theta_2 & \cos\theta_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\delta} \end{pmatrix} \begin{pmatrix} \cos\theta_1 & \sin\theta_1 & 0 \\ -\sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_3 & \sin\theta_3 \\ 0 & -\sin\theta_3 & \cos\theta_3 \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

 $\theta_1 \equiv \theta_C$ is the Cabibbo angle: $\sin(\theta_C) \approx 0.23 \pm 0.01$.

15.13 The standard model

When one wants to make the Lagrange density which describes a field invariant for local gauge transformations from a certain group, one has to perform the transformation

$$\frac{\partial}{\partial x_{\mu}} \to \frac{D}{Dx_{\mu}} = \frac{\partial}{\partial x_{\mu}} - i\frac{g}{\hbar}L_k A^k_{\mu}$$

Here the L_k are the generators of the gauge group (the "charges") and the A_{μ}^k are the gauge left g is the matching coupling constant. The Lagrange density for a scalar field become:

 $\mathcal{L} = -\frac{1}{2} (D_{\mu} \Phi^* D^{\mu} \Phi + M^2 \Phi \Phi) \mathbf{E} \mathbf{E}_{\mu\nu}^{a} \mathbf{e}_{a}^{\mu\nu}$

and the field tensors are given by: $F^a_{\mu\nu} = \delta$

15.13.1 The electro verk theory

The 19 thw are interaction arises from the precessity to keep the Lagrange density invariant for local gauge transformations of the group 16(2600) Right- and left-handed spin states are treated different because the weak interaction does not conserve parity. If a fifth Dirac matrix is defined by:

$$\gamma_5 := \gamma_1 \gamma_2 \gamma_3 \gamma_4 = - \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right)$$

the left- and right- handed solutions of the Dirac equation for neutrino's are given by:

$$\psi_{\rm L} = \frac{1}{2}(1+\gamma_5)\psi$$
 and $\psi_{\rm R} = \frac{1}{2}(1-\gamma_5)\psi$

It appears that neutrino's are always left-handed while antineutrino's are always right-handed. The hypercharge Y, for quarks given by $Y = B + S + C + B^* + T'$, is defined by:

$$Q = \frac{1}{2}Y + T_3$$

so $[Y, T_k] = 0$. The group $U(1)_Y \otimes SU(2)_T$ is taken as symmetry group for the electroweak interaction because the generators of this group commute. The multiplets are classified as follows:

		$e_{\rm R}^-$	$ u_{ m eL} \ { m e}_{ m L}^-$	$u_{\rm L} d'_{\rm L}$	$\boldsymbol{u}_{\mathrm{R}}$	d_{R}
1	7	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0
1	3	0	$\frac{1}{2} - \frac{1}{2}$	$\frac{1}{2} - \frac{1}{2}$	0	0
Y	7	-2	-1	$\frac{1}{3}$	$\frac{4}{3}$	$-\frac{2}{3}$

Now, 1 field $B_{\mu}(x)$ is connected with gauge group U(1) and 3 gauge fields $\vec{A}_{\mu}(x)$ are connected with SU(2). The total Lagrange density (minus the field terms) for the electron-fermion field now becomes:

$$\mathcal{L}_{0,\mathrm{EW}} = -(\overline{\psi_{\nu\mathrm{e,L}}}, \overline{\psi_{\mathrm{eL}}})\gamma^{\mu} \left(\partial_{\mu} - i\frac{g}{\hbar}\vec{A}_{\mu} \cdot (\frac{1}{2}\vec{\sigma}) - \frac{1}{2}i\frac{g'}{\hbar}B_{\mu} \cdot (-1)\right) \left(\begin{array}{c}\psi_{\nu\mathrm{e,L}}\\\psi_{\mathrm{eL}}\end{array}\right) - \overline{\psi_{\mathrm{eR}}}\gamma^{\mu} \left(\partial_{\mu} - \frac{1}{2}i\frac{g'}{\hbar}(-2)B_{\mu}\right)\psi_{\mathrm{eR}}$$

Here, $\frac{1}{2}\vec{\sigma}$ are the generators of T and -1 and -2 the generators of Y.

15.13.2 Spontaneous symmetry breaking: the Higgs mechanism

All leptons are massless in the equations above. Their mass is probably generated by *spontaneous symmetry* breaking. This means that the dynamic equations which describe the system have a symmetry which the ground state does not have. It is assumed that there exists an isospin-doublet of scalar fields Φ with electrical charges +1 and 0 and potential $V(\Phi) = -\mu^2 \Phi^* \Phi + \lambda (\Phi^* \Phi)^2$. Their antiparticles have charges -1 and 0. The extra terms in \mathcal{L} arising from these fields, $\mathcal{L}_H = (D_{L\mu} \Phi)^* (D_L^{\mu} \Phi) - V(\Phi)$, are globally U(1) \otimes SU(2) symmetric. Hence the state with the lowest energy corresponds with the state $\Phi^*(x)\Phi(x) = v = \mu^2/2\lambda$ =constant. The field can be written (were ω^{\pm} and z are Nambu-Goldstone bosons which can be transformed away, and $m_{\phi} = \mu \sqrt{2}$) as:

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} = \begin{pmatrix} i\omega^+ \\ (v+\phi-iz)/\sqrt{2} \end{pmatrix} \text{ and } \langle 0|\Phi|0\rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$$

Because this expectation value $\neq 0$ the SU(2) symmetry is broken but the U(1) symmetry is her. When the gauge fields in the resulting Lagrange density are separated one obtains:

$$W_{\mu}^{-} = \frac{1}{2}\sqrt{2}(A_{\mu}^{1} + iA_{\nu}^{2}) \quad W^{+} = O(A_{\mu}^{1} - iA_{\nu}^{2})$$

$$Z_{\mu} = \frac{gA_{\mu}^{3} - g'B_{\mu}}{\sqrt{g^{1} + g^{2}}} \equiv A_{\mu}^{3}\cos(\theta_{W}) \in B_{\mu}^{1}\sin(\theta_{V})$$

$$Q_{\mu}^{1} = \frac{g'A_{\mu}^{3} + gB_{\mu}}{\sqrt{g^{2} + g^{2}}} \equiv Q_{\mu}^{1}\sin(\theta_{W}) + B_{\mu}\cos(\theta_{W})$$

where θ_W is called the *Weinbyrg angle*. For this angle holds: $\sin^2(\theta_W) = 0.255 \pm 0.010$. Relations for the masses of the field quanta can be obtained from the remaining terms: $M_W = \frac{1}{2}vg$ and $M_Z = \frac{1}{2}v\sqrt{g^2 + g'^2}$,

and for the elementary charge holds: $e = \frac{gg'}{\sqrt{g^2 + g'^2}} = g' \cos(\theta_W) = g \sin(\theta_W)$

Experimentally it is found that $M_W = 80.022 \pm 0.26 \text{ GeV/c}^2$ and $M_Z = 91.187 \pm 0.007 \text{ GeV/c}^2$. According to the weak theory this should be: $M_W = 83.0 \pm 0.24 \text{ GeV/c}^2$ and $M_Z = 93.8 \pm 2.0 \text{ GeV/c}^2$.

15.13.3 Quantum chromodynamics

Coloured particles interact because the Lagrange density is invariant for the transformations of the group SU(3) of the colour interaction. A distinction can be made between two types of particles:

- 1. "White" particles: they have no colour charge, the generator $\vec{T} = 0$.
- 2. "Coloured" particles: the generators \vec{T} are 8 3 × 3 matrices. There exist three colours and three anticolours.

The Lagrange density for coloured particles is given by

$$\mathcal{L}_{\text{QCD}} = i \sum_{k} \overline{\Psi_k} \gamma^{\mu} D_{\mu} \Psi_k + \sum_{k,l} \overline{\Psi_k} M_{kl} \Psi_l - \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a$$

The gluons remain massless because this Lagrange density does not contain spinless particles. Because leftand right- handed quarks now belong to the same multiplet a mass term can be introduced. This term can be brought in the form $M_{kl} = m_k \delta_{kl}$.

The ∇ -operator

In cartesian coordinates (x, y, z) holds:

$$\vec{\nabla} = \frac{\partial}{\partial x}\vec{e}_x + \frac{\partial}{\partial y}\vec{e}_y + \frac{\partial}{\partial z}\vec{e}_z \quad , \quad \text{grad}f = \vec{\nabla}f = \frac{\partial f}{\partial x}\vec{e}_x + \frac{\partial f}{\partial y}\vec{e}_y + \frac{\partial f}{\partial z}\vec{e}_z$$
$$\text{div} \ \vec{a} = \vec{\nabla} \cdot \vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} \quad , \quad \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
$$\text{rot} \ \vec{a} = \vec{\nabla} \times \vec{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right)\vec{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right)\vec{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right)\vec{e}_z$$

In cylinder coordinates (r,φ,z) holds:

$$\vec{\nabla} = \frac{\partial}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial}{\partial\varphi}\vec{e}_{\varphi} + \frac{\partial}{\partial z}\vec{e}_z \ , \ \operatorname{grad} f = \frac{\partial f}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial f}{\partial\varphi}\vec{e}_{\varphi} + \frac{\partial f}{\partial z}\vec{e}_z$$
$$\operatorname{div} \vec{a} = \frac{\partial a_r}{\partial r} + \frac{a_r}{r} + \frac{1}{r}\frac{\partial a_{\varphi}}{\partial\varphi} + \frac{\partial a_z}{\partial z} \ , \ \nabla^2 f = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r}\frac{\partial f}{\partial r} + \frac{1}{r^2}\frac{\partial^2 f}{\partial\varphi^2} + \frac{\partial^2 f}{\partial z^2}$$
$$\operatorname{rot} \vec{a} = \left(\frac{1}{r}\frac{\partial a_z}{\partial\varphi} - \frac{\partial a_{\varphi}}{\partial z}\right)\vec{e}_r + \left(\frac{\partial a_r}{\partial z} - \frac{\partial a_z}{\partial r}\right)\vec{e}_{\varphi} + \left(\frac{\partial a_{\varphi}}{\partial r} + \frac{a_{\varphi}}{r} - \frac{1}{r}\frac{\partial a_r}{\partial\varphi}\right)\vec{e}_z$$

In spherical coordinates (r, θ, φ) holds:

$$\begin{split} \vec{\nabla} &= \frac{\partial}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial}{\partial \theta}\vec{e}_{\theta} + \frac{1}{r\sin\theta}\frac{\partial}{\partial \varphi}\vec{e}_{\varphi} \\ \text{grad}f &= \frac{\partial f}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial f}{\partial \theta}\vec{e}_{\theta} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \varphi}\vec{e}_{\varphi} \\ \text{div} \vec{a} &= \frac{\partial a_r}{\partial r} + \frac{2a_r}{r} + \frac{1}{r}\frac{\partial a_\theta}{\partial \theta} + \frac{a_\theta}{r\tan\theta} + \frac{1}{r\sin\theta}\frac{\partial a_\varphi}{\partial \varphi} \\ \text{rot} \vec{a} &= \left(\frac{1}{2}\frac{\partial h}{\partial \theta} + \frac{1}{r\tan\theta} - \frac{1}{r}\frac{\partial h}{r\sin\theta}\frac{\partial h}{\partial \varphi}\right)\mathbf{r}_r + \left(\frac{1}{r\sin\theta}\frac{\partial a_r}{\partial \varphi} - \frac{\partial a_\varphi}{\partial r} - \frac{a_\varphi}{r}\right)\vec{e}_{\theta} + \\ \left(\frac{\partial a_\theta}{\partial r} + \frac{h}{r}\frac{1}{\partial \theta}\right)\vec{e}_{\varphi} \\ \nabla^2 f &= \frac{\partial^2 f}{\partial r^2} + \frac{2}{r}\frac{\partial f}{\partial r} + \frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2} + \frac{1}{r^2}\frac{\partial f}{\tan\theta}\frac{\partial f}{\partial \theta} + \frac{1}{r^2}\frac{\partial^2 f}{\sin^2\theta}\frac{\partial^2 f}{\partial \varphi^2} \end{split}$$

General orthonormal curvelinear coordinates (u, v, w) can be obtained from cartesian coordinates by the transformation $\vec{x} = \vec{x}(u, v, w)$. The unit vectors are then given by:

$$\vec{e}_u = rac{1}{h_1}rac{\partial \vec{x}}{\partial u} \,, \ \vec{e}_v = rac{1}{h_2}rac{\partial \vec{x}}{\partial v} \,, \ \vec{e}_w = rac{1}{h_3}rac{\partial \vec{x}}{\partial w}$$

where the factors h_i set the norm to 1. Then holds:

$$\begin{aligned} \operatorname{grad} f &= \frac{1}{h_1} \frac{\partial f}{\partial u} \vec{e}_u + \frac{1}{h_2} \frac{\partial f}{\partial v} \vec{e}_v + \frac{1}{h_3} \frac{\partial f}{\partial w} \vec{e}_w \\ \operatorname{div} \vec{a} &= \frac{1}{h_1 h_2 h_3} \left(\frac{\partial}{\partial u} (h_2 h_3 a_u) + \frac{\partial}{\partial v} (h_3 h_1 a_v) + \frac{\partial}{\partial w} (h_1 h_2 a_w) \right) \\ \operatorname{rot} \vec{a} &= \frac{1}{h_2 h_3} \left(\frac{\partial (h_3 a_w)}{\partial v} - \frac{\partial (h_2 a_v)}{\partial w} \right) \vec{e}_u + \frac{1}{h_3 h_1} \left(\frac{\partial (h_1 a_u)}{\partial w} - \frac{\partial (h_3 a_w)}{\partial u} \right) \vec{e}_v + \frac{1}{h_1 h_2} \left(\frac{\partial (h_2 a_v)}{\partial u} - \frac{\partial (h_1 a_u)}{\partial v} \right) \vec{e}_w \\ \nabla^2 f &= \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u} \left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{h_3 h_1}{h_2} \frac{\partial f}{\partial v} \right) + \frac{\partial}{\partial w} \left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial w} \right) \right] \end{aligned}$$

۱.