Il Physics Formulary by ir. J.C.A. Wevers
3 Relativity 13
3.1 Specialrelativity . . . . . . .. 13
3.1.1 Thelorentztransformation . . ... .. .. ... . ... ... ... 13
3.1.2 Redandblueshift . .. ... ... . ... 14
3.1.3 The stress-energy tensor and the fieldtensor . . . . . . ... .. ... ... ...... 14
3.2 Generalrelativity . . . . . . . 14
3.2.1 Riemannian geometry, the Einsteintensor . . . . . ... ... ... ... ....... 14
3.2.2 Thelineelement . . . . . . . . . .. 15
3.2.3 Planetary orbits and the perihelionshift . . . . .. .. .. ... ... ... ... .. 16
3.2.4 Thetrajectoryofaphoton .... ... ... . ... ... 17
3.25 Gravitationalwaves . . . . . . . . . e e e 17
3.26 CosmOlogy . . . .o e 17
4 Oscillations 18
4.1 Harmonicoscillations . . . . . . . . . 18
4.2 Mechanicoscillations . . . . .. . . . L 18
4.3 Electricoscillations . . . . . . . .. e 18
4.4 WavesinlongconducCtors . .... . . . . . . . 19
4.5 Coupled conductors and transformers. . . . . . . ... ... .. .. oo 19
4.6 Pendulums . . . . . . L e e e e e 19
5 Waves 20
5.1 Thewaveequation . .. ... ... ... ... ... .. - N .. 20
5.2 Solutions of the wave equation . . . . .. .......... e CO e 20
521 Planewaves. . . . .. ... ... ... ... L \e I 20
5.2.2 Sphericalwaves. . . ... ... .. .. tesa ................. 21
5.2.3 Cylindricalwaves. . . .. .. N ..................... 21
5.2.4 Thegenerals t|o |m on. ... 0’( ................. 21
5.3 The statlonary ha v(l ........ " l ................... 21
5.4 Green fu he |aI vaIu ro ....................... 22
5. reson t| .............................. 22
5@ near wave eqUARIBNTAN). . . . . . . 23
6 Optics 24
6.1 Thebendingoflight. . . . . . . . . . 24
6.2 Paraxial geometrical optics . . . . . . . .. 24
6.2.1 LENSES . . . . . e e e e e e 24
6.2.2 MIITOrs . . . . . e e 25
6.2.3 Principalplanes . . . . . . . . 25
6.2.4 Magnification . . . . . . . . L e 25
6.3 Matrixmethods .. . . . . . . . . e 26
6.4 Aberrations . . . . . . L e e 26
6.5 Reflectionandtransmission . . . . . . . . . . . ... 26
6.6 Polarization . . . . . . . 27
6.7 Prismsanddispersion . . . . . .. 27
6.8 Diffraction. . . . . . . . L e e 28
6.9 Specialopticaleffects . . . . . . . . L 28
6.10 The Fabry-Perotinterferometer . . . . . . . . . . . . . . . . e 29
7 Statistical physics 30
7.1 Degreesoffreedom . . . . . . . L 30
7.2 Theenergy distribution function . . . . . .. . ... ... . 30
7.3 Pressureonawall . . . . ... 31
7.4 Theequationofstate . . . . . . . . . . 31
7.5 Collisions betweenmolecules.. . . . . . . . . . . . . . 32




6 Physics Formulary by ir. J.C.A. Wevers

1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:
L'=I15+1L,
wherel is themoment of inertiavith respect to a central axis, which is given by:

I=Y miii?; T =W = swl;jéé; = 31w’

or, in the continuous case:

Further holds: -
Li = I’L]w]' N I” = 1; ] Iij = Iji = 7kaﬂ'5ll’/

Steiner’s theorem sk, ;v p = Iy.r.t.c + m(DM)? if axis C || axis D.

[ Object | I | Object | 1 |
Massive cylinder 1\3%2
Halter O 7= 1uR?
e G i
e =
= imNO

ar, axi ﬁf(ough end | I = imi?
@m(oﬂ -%ect Jaxid bthr. m | I = ma?
L)
opfeis
EachWrigid body has (at least p axes which startid each other. For a principal axis holds:

o1 o1 oI
Ow;  Ow, 0w,

Cavern cylinder I =mR?
Disc, axis in plane disc throughm I = 1mR?

Cavern sphere I =2mR?

Bar, axisL through c.o.m.

Rectangle, axis. plane thr. + b

=0soL, =0

. . L, —1I .
The following holdswy, = —a;j,ww; With a;;, = Lif I <Ip < Is.
k

1.6.3 Time dependence

For torque of force” holds:

ThetorqueT is defined by T = F x d.

1.7 \Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus
Starting with:

b
. . du d
5/£(q,q,t)dt =0 with §(a) =0(b) =0 and ¢ <%) = %(&u)
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the equations of Lagrange can be derived:

doL oc
dt 8¢;  9q;
When there are additional conditions applying to the variational probleifu) = 0 of the type

K (u) =constant, the new problem becomé&g(u) — AdK (u) = 0.

1.7.2 Hamilton mechanics

TheLagrangianis given by: £ = >~ T(¢;) — V(¢:). TheHamiltonianis given by: H =} ¢ip; — L. In 2
dimensions holdsC = 7' — U = im(i? + r2¢?) — U(r, ¢).

If the used coordinates acanonicalthe Hamilton equations are the equations of motion for the system:

dgi OH  dp;  OH
dt ~ Op; ' dt  9q

Coordinates are canonical if the following holds;, ¢;} = 0, {p:,p;} =0, {¢:,p;} = d;; where{, } is the

Poisson bracket
0A 0B 0AOB
A B} = - —
{’}gj%m e

(0, I), obtained by the canonical transformatimﬁ: ZI/mwcos andp =- 2Im inverse

The Hamiltonian of a Harmonic oscillator is given B(xz, p) = p?/2m + $mw? With new l&oirdinates
6 = arctan(—p/mwz) andI = p?/2mw + Fmwz? it follows:

The Hamiltonian of a charged particle with charge an ex {@%@aﬁetlc field is given by:

This Hamlltonla ‘rgl "!rom the Ham:lxr ree parfitle p? /2m with the transformations
om a relativistic point of view: this is equivalent to the

tran? of the momeb — qA®. A gauge transformation on the potentizd$
correSponds with a canonical ransformatlon WhICh make the Hamilton equations the equations of motion for

the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:

oV . o%v
@Joomm>V@ﬂm%m Vi QMQ

With T = %(Mikqiq'k) one receives the set of equatiangj + V¢ = 0. If ¢;(t) = a; exp(iwt) is substituted,
this set of equations has solutionslift(V — w2M) = 0. This leads to the eigenfrequencies of the problem:
5 apVay
wk = T
a; May
eigenvibrations.

. If the equilibrium is stable holdszk thatw? > 0. The general solution is a superposition if

1.7.4 Phase space, Liouville’s equation

In phase space holds:

9 0 o 0 OH 0 OH
B (;@’;@) SOV'”_;(aqz-api _82%0%')
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W2 = m2c* + p2c®. p = myv = ymov = Wu/c?, andpc = W3 where3 = v/c. Theforceis definedby
F = dp/dt.
4-vectors have the property that their modulus is independent of the observer: their companehisnge
after a coordinate transformation but not their modulus. T(De difference of two 4-vectors transforms also as
a 4-vector. The 4-vector for the velocity is given by = di The relation with the “common” velocity
T

ut = dat/dt is: U* = (yu',icy). For particles with nonzero restmass hol@&'U, = —c?, for particles
with zero restmass (so with = ¢) holds: U*U,, 0 The 4-vector for energy and momentum is given by:
p® = moU® = (yp',iW/c). SO:pap® = —mic? = p*> — W?2/c2.

3.1.2 Red and blue shift
There are three causes of red and blue shifts:

! 1%),

1. Motion: withé, - &, = cos(ip) follows: — =~
C
This can give both red- and blueshift, alsdo the direction of motion.

2. Gravitational redshift:A—f = ﬂ
I rc2

3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:
)\0 RO

N R \.)\4

The conservatw\@W\an be writte Q& € electromagnetic field tensor is given by:
P P a’?ﬂw _ 45 94a

oz*  OzP
with A, := (4,iV/c) and.J,, := (J,icp). The Maxwell equations can than be written as:

O FM = poJ" , O\Fuy + 0uFyx + 0y Fy, =0

The equations of motion for a charged particle in an EM field become with the field tensor:

dp
e

3.2 General relativity

3.2.1 Riemannian geometry, the Einstein tensor

The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time
7 or arc lengths as parameter. For particles with zero rest mass (photons), the use of a free parameter is
required because for them holds = 0. From§ | ds = 0 the equations of motion can be derived:

APz dz® dx

« —

s s ds
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2. Theprinciple of equivalenceinertial mass= gravitational mass=- gravitation is equivalent with a
curved space-time were particles move along geodesics.

3. By a proper choice of the coordinate system it is possible to make the metric locally flat in each point
X;. gaﬁ(wi) = Nap ::diag( 1,1,1, 1)

TheRiemann tensas defined asRﬁaBT” =V, VTH —-V3V,TH, where the covariant derivative is given
by Vjai = ajai + I’;kak andvjai = ajai — I’fjak. Here,

ri gél <8glj N dgi, 99,k 0%zl O’

oxidzk oz’

= ok T B Dl > , for Euclidean spaces this reducesit;, =

are theChristoffel symbolsFor a second-order tensor holdS.,, Vs|T) = RL ;T + R], T4, Via, =
akaé —Fl al—l—Fkla Viaij = Opai; — Fklal] Fk]ajl andVa¥ = dya®? —|—F’lal3 +I’kla” The following
hoIds:RﬁW =05, - 0,15, + 151G, — 15,15,

TheRicci tensoris a contraction of the Riemann tensdt;,s := R’
TheBianchi identitiesare: VaRagu + Vi Ragay + ViRagur = 0.

apgr Which is symmetric:Rq3 = Rga.
The Einstein tensois given by: G*# := R — 14°FR, whereR := R is theRicci scalar for which

holds: VsGas = 0. With the variational prmupleSf (9u) — Rc?/16mk)+/|g|d*x = 0 for variations
9 — 9uv + 99, theEinstein field equationsan be derived:

Gap = 8mk w8 | » which can also be written a3 = —- C@TU\A
For empty space this is equivalentty,g = 0. The equatloig @\gonly solution a flat space.

The Einstein equations are 10 independent equ re of se grderirom this, the Laplace
equation from Newtonian gravitatio “\d st W, where|h| < 1. Inthe
stationary case, this resu\TIIQﬂ2 @c /82
The mossg a f\@) field equ @&2 agR + Agap = —5Tag

tl

whe hecosmologlcal c onstant plays arole in mflatory models of the universe.

3.2.2 The line element

: . . o oz ok
Themetric tensoiin an Euclidean space is given by = - —,
ozt Jxd
In general holdsds? = g,,,dz*dz”. In special relativity this becomes? = —c2dt? + daz? + dy? + dz°.

This metric,n,, :=diag(—1, 1,1, 1), is called theMinkowski metric

Theexternal Schwarzschild metrapplies in vacuum outside a spherical mass distribution, and is given by:

2 om\ !
ds® = (1 T —m) Adi? + <1 - —m> dr? + r2d02
T T

Here,m := Mr/c? is thegeometrical massf an object with mas3/, anddQ? = d6? + sin? fde?. This
metric is singular for = 2m = 2xM/c2. If an object is smaller than its event horizdm, that implies that
its escape velocity is- ¢, itis called ablack hole The Newtonian limit of this metric is given by:

ds? = —(1+2V)Edt? + (1 — 2V)(dz? + dy® + dz?)

whereV = —xM/r is the Newtonian gravitation potential. In general relativity, the componenjgs,ofire
associated with the potentials and the derivativeg,pfwith the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near
r = 2m. They are defined by:
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1. Series connectiolV. = 17,
Zit = Zi, Liv=)_ L L —Zl Q=2 Z = R(1 +1iQ0)
tot — ) tot — iy o~ ~ - -
i 3 Ctot i Cz R
2. parallel connectionV = 17,

1 1 1 1 R R
= - T = —, Ciot = Ci, Q=—, Z=+——=
Lot ; Zi " Lot ; L, ; @ Zy 1+1Q0

| L 1
Here,Zyp = 1/ = andwy = —.
0 C 0 ,—LC

The power given by a source is given Byt) = V (t) - I(t), SO(P), = Vet It cos(A¢)
IV Icos(¢, — ¢;) = 1?Re(Z) = 3V?Re(1/Z), wherecos(A¢) is the work factor.

4.4 Waves in long conductors

. . [dL d
These cables are in use for signal transfer, e.g. coax cable. For them Hgle: T dé

The transmission velocity is given hy= ;l—z ;l_g u k ’

For two coils enclosing each others flux hol s<1> of the f@ﬂ?gmatmg fron, through coil 2
0

which is enclosed by coil 1, tha I L Oy = 1. ’S‘ efficients of mutual induction
Mij holds: "f ‘

N P
oW 6 005,
whe@ @1 is thecouplu'glagatransformer i~ 1. At fuII load holds:

iwM Ly Ny

— ~ —

4.5 Coupled conductors and transformerssa\e

V2 I_l_ iwLy + Rioaa ~ VL Ny

4.6 Pendulums

The oscillation timel” = 1/ f, and for different types of pendulums is given by:
e Oscillating springT” = 2w+/m/C if the spring force is given by’ = C - Al.

e Physical penduluml’ = 27/I /7 with 7 the moment of force anfithe moment of inertia.

the constant of torsion anfdthe moment of inertia.

Torsion pendulum?’ = 27/I/k with xk =
. p m/I/k K= A

e Mathematical pendulun¥’ = 27/1/g with g the acceleration of gravity aridhe length of the pendu-
lum.
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3. E, and B, are zero everywhere: the Transversal electromagnetic mode (TEM). Than holds:
tw,/ep andvs = v, just as if here were no waveguide. Furtiiee IR, so there exists no cut-off

frequency.
In a rectangular, 3 dimensional resonating cavity with edgésandc the possible wave numbers are given
by: k, = mn , by = WTW , k, = "7 This results in the possible frequencies- vk /27 in the cavity:
C
v [n2  nZ o np2
fF=sVa2treta

For a cubic cavity, withu = b = ¢, the possible number of oscillating mod#g, for longitudinal waves is
given by:
4rad f3

3v3

Because transversal waves have two possible polarizations holds for daerm:2 Vy,.

Ny, =

5.6 Non-linear wave equations
TheVan der Polequation is given by:

d*x dz
Wfswo(lfﬂz)dterox*O K

Bx?% can be ignored for very small values of the amplitude. Substituty

24/1 — 1£2). The lowest-order instabilities grow 3swy. Whi
and diminishes the growth. Oscillations on a t

the 2nd term becomes larger

eX|st is expanded as = z(© +
ex® + 223 4+ ... and thisis subst em ol\taths;, besi ar termsv et. If it is assumed
that there exist timescale\glq h Tn/é)t =" lar terms are put 0 one obtains:

P(e\, %Q%w;}swo 1693)@:;)

This is an energy equation. Energy is conserved if the left-hand side is28. 3 1/3, the right-hand side
changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth
of oscillations.

TheKorteweg-De Vriegquation is given by:

u ou_ 00 pdu
ot Oz oz ox3
——— ~———

non—lin  dispersive

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions
of the following form exist:
—d

ule =) = cosh?(e(x — ct))

with ¢ = 1 + 1ad ande? = ad/(12b%).




Chapter 7

Statistical physics

7.1 Degrees of freedom

A molecule consisting of atoms has = 3n degrees of freedom. There are 3 translational degrees of freedom,
a linear molecule has = 3n — 5 vibrational degrees of freedom and a non-linear molesue 3n — 6. A
linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count double. So,
for linear molecules this results in a total o 6n — 5. For non-linear molecules this gives= 6n — 6. The
average energy of a molecule in thermodynamic equilibriufifis,) = %skT. Each degree of freedom of a
molecule has in principle the same energy: phiaciple of equipartition

The rotational and vibrational energy of a molecule are:

h2
Wiot = 57l +1) = Bl +1) , W = (v + )hwo \)\A
The vibrational levels are excitedifl’ ~ hw, the rotatlonal Ievel I*@mc%r molecule are excited if
kT = 2B. For homonuclear molecules addmonalﬁ o the rotational levels are well coupled
if kT ~ 6B.

7.2 The% I '[I:‘J tlon fu O“ ’L
The x@rm of the eqw@ 9 dlstrlbuuon function is
dvg - P(v

P(vg Moy, v;)dvgduydv, = P )dvy, - P(v.)dv, with

Pos)dv; = — AW
V; vzfaﬁexp o2 Vi

wherea = /2kT/m is themost probable velocitgf a particle. The average velocity is given ky) =
20/ /T, and<v2> = %aQ. The distribution as a function of the absolute value of the velocity is given by:

dN 4N mu?
Lo 2 Rexp [ ——
dv  a3\/m v Tk

The general form of the energy distribution function then becomes:

P(E)dE = C(S) (lfT) %Sflexp (kﬂT) dE

wherec(s) is a normalization constant, given by:

1. Evens: s = 2[: ¢(s) =

(1)
2l

2. 0dds: 5 =20+ 1: (s) = ——p

30
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7.3 Pressure on a wall

The number of molecules that collides with a wall with surfaceithin a timer is given by:

co m 2w
/// d®*N = ///nAUTcos(G)P(U,9,¢)dvd9d<p
00 0

1

From this follows for the particle flux on the walk = ;n (v). For the pressure on the wall then follows:

- 2mu cos(0)d> N 2
Bp="" 7 " sop=-n(E
p I , S0 p=gn(E)

7.4 The equation of state

If intermolecular forces and the volume of the molecules can be neglected then for gases:ffoém
and(E) = 3kT can be derived:

pV =n,RT = %Nm (v?)

Here,n; is the number omolesparticles andV is the total number of particles within volumé\Ifzhe own
volume and the intermolecular forces cannot be neglectedahaer Waalequation c6be

ar ) te;g,a\e-

There is an isotherme with a h nzm ectlon Hie d r Waals equation this corresponds
with thecritical temperatur Iumeof t%ga is per limit of the area of coexistence
olfow

between quuid a =0 andd

P ( e a’g* Per = 2762 , Ver = 3bng

For the critical point holdspc, Vi, cx/ RTer = g which differs from the value of 1 which follows from the
general gas law.

Scaled on the critical quantities, with := p/pc,, T* = T/Tc, andV,}, = V,,, / Vi, o With V,, := V/n, holds:

(v + o) (G- 1) =37

Gases behave the same for equal values of the reduced quantitilesv tiféhe corresponding statea virial
expansioris used for even more accurate views:

m

TheBoyle temperaturéy is the temperature for which the 2nd virial coefficient is 0. In a Van der Waals gas,
this happens @ = a/Rb. Theinversion temperatur@; = 275.

The equation of state for solids and liquids is given by:

4 oV oV
=14+ AT —kpdp=1+ = (= | AT+ = A
st sty (o) st (), o0
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7.5 Collisions between molecules

The collision probability of a particle in a gas that is translated over a distanisegiven bynodx, whereo is
thecross sectionThe mean free path is given lby= & with w = \/vf + v3 the relative velocity between

. 1 1 .
the particles. Ifm; < mq holds: g + —,s80f = —. If my = my holds: ¢ = . This means
U1 my’ no’ naﬂ

. - L 1 .
that the average time between two collisions is giverr by —. If the molecules are approximated by hard
nov

spheres the cross sectionis= 1w (D? + D3). The average distance between two molecul@s5sn /3.
Collisions between molecules and small particles in a solution result iBrthenian motion For the average

motion of a particle with radiu® can be derived(z?) = % (r*) = kTt/3mnR.

A gas is called &Knudsen gasf ¢ > the dimensions of the gas, something that can easily occur at low
pressures. The equilibrium condition for a vessel which has a hole with sutfaté for which holds that
0> \/A/mis: n1/Ti = na\/Ty. Together with the general gas law follows://T1 = pa2/v/Ts.

Awa

If two plates move along each other at a distatiegth velocity w, theviscosityn is given by: F,, = ¢

The velocity profile between the plates is in that case givewby) = zw,./d. It can be derived thaj =
3ol (v) wherev is thethermal velocity

T —

The heat conductance in a non-moving gas is describe%?y:: KA ( , Which results in a temper-

ature profilel’(z) = Ty + z(T> — T1)/d. It can be derived that = 1CmVn€< > /Na. Also h = Cyn.
A better expression fot can be obtained with thEucken correctionx = (1 + 9@1@/) with an

error <5%. tesa\

7.6 Interaction between mq LNO ’(
For dipole interaction IQ s can_b er| a@lg If the distance between two
molecules app Wolecular dlamél rce between the electron clouds appears. This
forc = = +C /r® with 12 < s < 20. This results in the
Leng otentlal form@]ﬁ forces
12 6
a=e|(2) - (7)
T r

with a minimume atr = r,,. The following holds:D ~ 0.89r,,. For the Van der Waals coefficienisandb
and the critical quantities holds:= 5.275N2 D3¢, b = 1.3N7 D3, kTi, = 1.2¢ and Vi, 1o = 3.9Ns D3,

A more simple model for intermolecular forces assumes a potdifidl = oo for » < D, U(r) = Uy for
D <r <3DandU(r) = 0forr > 3D. This gives for the potential energy of one moleculg,,; =

3D
/ U (r)F(r)dr-
D
with F'(r) the spatial distribution function in spherical coordinates, which for a homogeneous distribution is
given by: F'(r)dr = 4nzr3dr.
Some useful mathematical relations are:

Ji i @E [
—r 2 2n ! ™ 2
z"e dxr =n! , e dy = —— Y 22Tl dr = Lpl
n192n+1 2
0 0 0
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From this one can derive Maxwell’s relations:

or (o ory _ (v o\ _ (98 vy _ (98
ov ) 95 )y’ op S_ 8Sp’ c‘)TV_ ov )’ 8Tp_ op ) r
From the total differential and the definitions@f- andC,, it can be derived that:

TdS = chT+T<g;> dV and TdS = C,dT — T<av> dp

Y aT

For an ideal gas also holds:

T v T
S = Cy 1 R1 Spo and S, = Cyln (= ) — RI S
i (i) ¢ () 9o am 5= o () = () +

Helmholtz’ equations are:
Op OH ov
=T = — - =V _T =
(aT)V " (ap)T (aT),,

ou
ov ) r
for an enlarged surface holdgW,., = —ydA, with - the surface tension. From this follows:
(U _(oF
7= \oa), " \94), \4
8.6 Processes

Theefficiencyy of a process is given by; = x\/g;: Sl tesa
1Y

TheCold factoré of a coollng d D @ EHSNS glven b@/f ¢ > o

Reversible adlu
For esses hol ﬂ 7 For reversmle adiabatic processes holds Poisson’s equation:
with C »/Cy one gets t nstant Also holdsTV~! =constant and™p!~" =constant.
Adiabatics exhibit a greater steepngsg diagram than isothermics because- 1.

Isobaric processes
Here holds:H, — H, = ff CpdT. For areversible isobaric process holds; — Hi = Qrev.
The throttle process

This is also called th@oule-Kelvineffect and is an adiabatic expansion of a gas through a porous material or a
small opening. Heré{ is a conserved quantity, amd > 0. In general this is accompanied with a change in
temperature. The quantity which is important here istkinettle coefficient

oT 1 ov
== ==—|[T|=) -V
o ( op ) u Op ( or ) p
Theinversion temperatures the temperature where an adiabatically expanding gas keeps the same tempera-

ture. If T > T; the gas heats up, If < T; the gas cools dowrll; = 273, with for Tg: [0(pV)/0p]r = 0.
The throttle process is e.g. applied in refridgerators.

The Carnotprocess

The system undergoes a reversible cycle with 2 isothemics and 2 adiabatics:
1. Isothermic expansion dt . The system absorbs a h&at from the reservoir.

2. Adiabatic expansion with a temperature drofito
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This is expressed ag'’’ is the part ofF that transforms according to thdd row of 10).
F can also be expressed in base functignst’ = > caj,{ga(‘”). The functlonsf(” are in general not

ajk

transformed into each other by elements of the group. However, this does happgnfc;,.

Theorem: Two wavefunctions transforming according to non-equivalent unitary representations or according
to different rows of an unitary irreducible representation are orthogonal:

<¢S)|¢§j>> ~ 810k, and(wﬁ)w ) is independent of.

13.3.4 The direct product of representations

Consider a physical system existing of two subsystems. The subBp4ax the system transforms according

to IV, Basefunctions are(’(#;), 1 < x < ¢;. Now form all ¢, x £, productsp{” () (#2). These
define a spac®) @ D®).

These product functions transform as:
Pr(eD (@) (@2)) = (Prel) (1)) (Prel (32))

In general the spac®™) ® D) can be split up in a number of invariant subspaces:

' or® = Znif‘(i)

: vk

A useful tool for this reduction is that for the characters hold:

RN (<1
(RN (R) = 6{@@3
13.3.5 Clebsch Go\rjlﬂc @m N %% IX_O’(

With the reduc ) one uses a new basi$™™. These base

t-productm %
funm acels(ak)P setransformation is given by:

Do (irjNakyp)

and the inverse transformation byt o\ = Z@‘“") (akplirg)
akp

In essence the Clebsch-Gordan coefficients are dot produefsi|akp) := <<p§;)g0£\ )| ﬁf’k)>

13.3.6 Symmetric transformations of operators, irreducible tensor operators

Observables (operators) transform as follows under symmetry transformatibrs: Pr APj, 1 If a set of
operatorsA,(J) with 0 < k < ¢; transform into each other under the transformatior bblds:

PRAS)PJQ Z A (J)

If 1) is irreducible they are calleideducible tensor operatorg (") with componentst?’.
An operator can also be decomposed into symmetry types:> a,(f), with:

jk

G =2 E (4)* —1
arc] - <h, FK]H (R)> (PRAPR )

Reg
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substates which exist independently for protons and neutrons. This gives rise to the smagiteal numbers
nuclei where each state in the outermost level are filled are particulary stable. This is the Nase i
€ {2,8,20,28,50,82,126}.

14.2 The shape of the nucleus
A nucleus is to first approximation spherical with a radiu®of Ry A'/3. Here,Ry ~ 1.4-10~'®> m, constant

for all nuclei. If the nuclear radius is measured including the charge distribution one oBtaiad .2 - 1012
m. The shape of oscillating nuclei can be described by spherical harmonics:

1+ Z alelm (9a 50)‘|

lm

R = Ry

I = 0 gives rise to monopole vibrations, density vibrations, which can be applied to the theory of neutron stars.
[ = 1 gives dipole vibrationd, = 2 quadrupole, withuy ¢ = 5 cosy andas +2 = %\/iﬁ siny whereg is the
deformation factor ang the shape parameter. The multipole moment is givepost Zer'Y;™ (6, ). The

parity of the electric moment g = (—1)!, of the magnetic momet,; = (—1)*1.

—

There are 2 contributions to the magnetic moméit = —— I, and Mg = gs—— 3.
2my, 2my
whereggs is the spin-gyromagnetic ratio For protons holdgs = 5.5855 and for neutrongs = —3.8263.

The z-components of the magnetic moment are givedby . = punm; andMg , = gsunms. Tlghe‘sulting
magnetic moment is related to the nuclear sperccording toM = g;(e/2my,)1. TheGO is then
)

M. = pngrmy.
sa\e |
14.3 Radioactive decay Ote

The number ofnucle| decayi gﬁ( to th fn 9 AN. This gives for the number
of nuclei N: N \sN" Thehalf li % rom7iA = In(2). The average life time
of a probab @ I decay within a time interval is given by a Poisson
dlstﬁxl N
Ae™
= No—py

If a nucleus can decay into more final states then hols: >~ A;. So the fraction decaying into statés
Ai/ > \i. There are 5 types of natural radioactive decay:

dt

1. a-decay: the nucleus emits a Henucleus. Because nucleons tend to order themselves in groups of
2p+2n this can be considered as a tunneling of &Hwucleus through a potential barrier. The tunnel
probability P is

p _ incoming ampl_|tude: e2G with G = 1 Qm/[V r) —
outgoing amplitude h

G is called theGamow factor

2. -decay. Here a proton changes into a neutron or vice versa:
pt —n’ 4+ Wt - n® +et +1,,andn® — pt + W~ — pF +e” +7..

3. Electron capture: here, a proton in the nucleus captures an electron (usually from the K-shell).
4. Spontaneous fission: a nucleus breaks apart.
5. ~-decay: here the nucleus emits a high-energetic photon. The decay constant is given by

21
A= P(Z) ~ E’Y E’)’R ~ 10—4l
hw (he)? \ he
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where! is the quantum number for the angular momentum &nthe radiated power. Usually the
decay constant of electric multipole moments is larger than the one of magnetic multipole moments.
The energy of the photon I8, = E; — Ey — T, with T = EZ2/2mc? the recoil energy, which

can usually be neglected. The parity of the emitted radiatidi’is= II° - II/. With I the quantum
number of angular momentum of the nucleldis= %+/I(I + 1), holds the following selection rule:

I — Ip| < A< |T + Ip.

14.4 Scattering and nuclear reactions

14.4.1 Kinetic model

If a beam with intensityl hits a target with density. and lengthx (Rutherford scattering) the number of
scatteringsk per unit of time is equal t&? = Inxo. From this follows that the intensity of the beam decreases
as—dl = Inodzx. This results il = Ije "% = [ye H*,

do _ R(0, )
B Q/dr =1 foll
ecauselR = R(0, p)dQ)/4m = Inzdo it follows: 30" Tenal
AN do
If N particles are scattered in a material with densitien holds: = nEAQAm

. AV AT 1
For Coulomb collisions holds2Z | — Z122¢ S~
dQ|o  8meouvg sin'(56) u
e cO-

14.4.2 Quantum mechanical model for n-p sc ttéga\ :

The initial state is a beam of neutrons moving th w tlon/hmt = e and current
densityJinit = v|Yinit]? = v. Atl ge’@ e\ fr e scat a@ ey have approximately a spherical

e

Wavefunctlorwbcat =f (9)\ik\"|/r%¥ iS thesc@n total wavefunction is then given
e\, \ e . oikr
PreVT pagtue
T

The particle flux of the scattered particle®|ggc.:|? = v|f(8)|?dS2. From this it follows that-(6) = | f(6)|?.
The wavefunction of the incoming particles can be expressed as a sum of angular momentum wavefunctions:

Yinit = ek Z U

The impact parameter is related to the angular momentumiwithbp = bhk, sobk =~ [. At very low energy
only particles withl = 0 are scattered, so

sin(kr
Y=y + Y v and g = ( )
>0
If the potential is approximately rectangular holdg: = Csm(k;;ﬂ
r
. . in2 47 sin?
The cross section is ther() = Smkgéo) S0 o = /g(e)dQ = _775122 (0o)
h2k?/2m

At very low energies holdssin?(5y) = W
0

4
with Wy the depth of the potential well. At higher energies holgs: k—z Z sin?(;)
l
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The probability to find a final state with GP —1 is 1| (K9|K®) |?, the probability of CP=+1 decay is

3| (KFIK?) 2.

2 1

The relation between the mass eigenvalues of the quarks (unaccented) and the fields arising in the weak currents

accented) Isu’, ¢',t") = (u, ¢, t), and:

( d) / / / d
0 0 cosfly sinf#; O
1 0 —sinf; cosf; O
0 e 0 0 1

d 1 0 0 1
s’ = 0 cosfy sinfs 0
v 0 —sinfly cosfy 0
1 0 0 d
0 cosf3 sinfj s
0 —sinf3 cosbs b

61 = O¢ is theCabibbo anglesin(f¢) ~ 0.23 £+ 0.01.

15.13 The standard model

When one wants to make the Lagrange density which describes a field invariant for local gauge transformations
from a certain group, one has to perform the transformation

0 D 0 g

— =
oz, Dz, 0z, h H

Here theL; are the generators of the gauge group (the “charges”) anﬁ’thﬂe the@ug\*ﬁ is the
matching coupling constant. The Lagrange density for a scalar field b\é

L=-YD,®*D"® + M*®

and the field tensors are given by, = 6“\ é)»&nL e f{ /xO’l

15.13.1 Th\f‘e alxXeory }

The?g ract|?? cessity to keep the Lagrange density invariant for local gauge
ti

tran ions of the gro Right- and left-handed spin states are treated different because the
weak interaction does not cOnserve parity. If a fifth Dirac matrix is defined by:

0 01 0
0 0 0 1
V5 = V172734 = — 10 0 0
01 0 0

the left- and right- handed solutions of the Dirac equation for neutrino’s are given by:

YL =3(1+7)¢ and yr = 1(1—5)0

It appears that neutrino’s are always left-handed while antineutrino’s are always right-handbglp&iluharge
Y, for quarks given by = B + S + C 4 B* 4 T, is defined by:

Q=3Y+T;

solY, Ti] = 0. The group U(1) ®SU(2); is taken as symmetry group for the electroweak interaction because
the generators of this group commute. The multiplets are classified as follows:

€y | veL € | UL dp | Ur | dr
T |0 i i 0 0
GRS e IR
v el o |y 4]
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Now, 1 field B, (z) is connected with gauge group U(1) and 3 gauge fiﬁg@) are connected with SU(2).
The total Lagrange density (minus the fieldterms) for the electron-fermion field now becomes:

Logw = —(Yver, V)™ (0 ~ilA (35) — llg—lB -(-1) Yrer ) _
> Ly © h # 2 2 h H weL
—_— g/
Yer V" (au - %iﬁ(2)3u) Yer
Here,1 50 are the generators @f and—1 and—2 the generators df.

15.13.2 Spontaneous symmetry breaking: the Higgs mechanism

All leptons are massless in the equations above. Their mass is probably genergpamtaneous symmetry
breaking This means that the dynamic equations which describe the system have a symmetry which the ground
state does not have. It is assumed that there exists an isospin-doublet of scaldr Viithiglectrical charges

+1 and 0 and potentidf (®) = —p2®*® + A\(®*®)2. Their antiparticles have charged and 0. The extra

terms inL arising from these field; = (D, ®)* (D} ®) — V(®), are globally U(1pSU(2) symmetric.

Hence the state with the lowest energy corresponds with the ®tate®(z) = v = u?/2\ =constant.

The field can be written (were® andz are Nambu-Goldstone bosons which can be transformed away, and

mg = pv/2) as:
() e wmvon=(

Because this expectation valge0 the SU(2) symmetry is broken but the U(l)ﬁf@t{“\kt When the

gauge fields in the resulting Lagrange density are separated one optal

W, = 1\/_A1—|—1A) ZAQ
gA3 T

Zu cos HW _‘B&
/A3 +g

( e\,\e ew + By, cos(fy)

Wheg is called the\Neln Q or this angle holdssin? (Ow) = 0.255 £+ 0.010. Relations for the
masses of the field quanta can be obtained from the remaining téfims= 2vg andMy = 5@«/9 + g2,

/

99
/92 + gl2
Experimentally it is found that/y, = 80.022 + 0.26 GeV/E and Mz = 91.187 4 0.007 GeV/c. According
to the weak theory this should b&fy = 83.0 £ 0.24 GeV/& and Mz = 93.8 + 2.0 GeV/&.

and for the elementary charge holds= = ¢’ cos(fw) = gsin(Ow)

15.13.3 Quantumchromodynamics

Coloured particles interact because the Lagrange density is invariant for the transformations of the group SU(3)
of the colour interaction. A distinction can be made between two types of particles:

1. “White” particles: they have no colour charge, the generﬁtecr 0.

2. “Coloured” particles: the generatdf'sare 83 x 3 matrices. There exist three colours and three anti-
colours.

The Lagrange density for coloured particles is given by
Locp = ZZ Uy "DV + Y UMy, — 1F, FIY
k,l

The gluons remain massless because this Lagrange density does not contain spinless particles. Because left-
and right- handed quarks now belong to the same multiplet a mass term can be introduced. This term can be
broughtin the form\f;; = mydg;.
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The V-operator

In cartesian coordinatés, y, z) holds:

. 0. 0. 0. of . of.  of_
V= axez+ayey+azez , gradf = fo z+ay y + 92 €,
. = _ da, da, Oa, - f a2f *f
dva=V.a=Z"+5 + 5 V=53 oz
. =_ - [0Oa, Oa, Oday, Oa, Oday,  Odag )\
o=V xa= (Ge -G e (G- 52)a <ax %)
In cylinder coordinateér, ¢, z) holds:
- 9. 10._. 9. of . 18f4 of .
= —€,r - z d == a_ €z
v ar° +r8<pew+aze gradf = or Jrr&p Jr@ze
2 2 2
diva:a‘” ar  1da,  Oa, VQf:af 10f 10*f 0°f

or r rdp 0z a2 ror 1202 | 022

rotad = <18az - %> €y + (aaT — 8az> €, + <%+ Go _ 18%) e,

r Op 0z " 0z or ) ¥ or r rop ) *

In spherical coordinatgs, 6, ¢) holds:

; . 10 1 0. \4
vV = 87ﬂr+_% eer%e@ Co‘u
gradf = 8fq L1 lafq 1 8fq esa\e
or er 89 rsinf 9o
a; o 1oy oﬁ

(r@ r an@ rsm
rot Ei " 8%
P(e rtanﬂ% rsm@ Jp or r

(92 20f 1 0°f 1 o
2 — -4 - 7 P
Vilo= or? + r Or + r2 062 r2 tan0 80 r2sin? § 02

General orthonormal curvelinear coordingtesv, w) can be obtained from cartesian coordinates by the trans-
formation# = #(u, v, w). The unit vectors are then given by:

- 1o 102 1 oz
€y =175, € = Ew

hl ou ’ hg 81} hg aw
where the factors; set the normto 1. Then holds:
1 of z 1 0f z 1af z

df =
gradf = S T e T s aw
diva = hthhS( (hohsay) + 8 (hshmv) 9w (hthaw))
R 1 O(hsay)  O(haay) z hlau d(hsaw)\ -
t = - - v
o hahs ( ow h3h1 ou vt
1 a(hgay) 8(h1au) 5
h1h2 8u 8’() v

2, 1 ﬂ h2h3g ﬂ h3h1g hlhgﬁ
ViEo= hihohg [c'm h1 Ou +8v hy Ov +8w hs Ow




