
Collision Resolution

• The hashing we’ve looked at so far does have problems with 
multiple keys hashing to the same location in the table

• For example, consider a function that places names in a table 
based on hashing the ASCII code of the first letter of the name

• Using this function, all names beginning with the same letter 
would hash to the same position

• If we attempt to improve the function by hashing the first two 
letters, we achieve better results, but still have problems

• In fact, even if we used all the letters in the name, there is still 
a possibility of collisions

• Also, while using all the letters of the name gives a better 
distribution, if the table only has 26 positions there is no 
improvement in using the other versions

Data Structures and Algorithms in C++, Fourth Edition 17

Preview from Notesale.co.uk

Page 17 of 89



Collision Resolution (continued)

• So in addition to using more efficient functions, we also need 
to consider the size of the table being hashed into

• Even then, we cannot guarantee to eliminate collisions; we 
have to consider approaches that assure a solution

• A number of methods have been developed; we will consider 
a few in the following slides

Data Structures and Algorithms in C++, Fourth Edition 18

Preview from Notesale.co.uk

Page 18 of 89



Collision Resolution (continued)

Fig. 10.2 Using quadratic probing for collision resolution

Data Structures and Algorithms in C++, Fourth Edition 24

Preview from Notesale.co.uk

Page 24 of 89



Collision Resolution (continued)

• Chaining
– In chaining, the keys are not stored in the table, but in the info

portion of a linked list of nodes associated with each table position

– This technique is called separate chaining, and the table is called a 
scatter table

– This was the table never overflows, as the lists are extended when 
new keys arrive, as can be seen in Figure 10.5

– This is very fast for short lists, but as they increase in size, 
performance can degrade sharply

– Gains in performance can be made if the lists are ordered so 
unsuccessful searches don’t traverse the entire list, or by using self-
organizing linked lists

– This approach requires additional space for the pointers, so if there 
are a large number of keys involved, space requirements can be high

Data Structures and Algorithms in C++, Fourth Edition 31

Preview from Notesale.co.uk

Page 31 of 89



Collision Resolution (continued)

• Chaining (continued)
– This way the next element in the list can be accessed with doing a 

sequential search down the list

– Each position in the table is an object that consists of two elements, 
info for the key and next which is the index of the key that collided 
with this position

– Available positions can be marked in their next fields, and a unique 
value can be used to mark the end of a chain

– This does require less space than chaining, but the number of keys 
that can be hashed is limited by table size

– For keys for which there is no room in the table, an overflow area 
known as the cellar can be dynamically located in the arrays

– Figure 10.6 shows an example of coalesced hashing where a key ends 
up in the last position in the table

Data Structures and Algorithms in C++, Fourth Edition 33

Preview from Notesale.co.uk

Page 33 of 89



Deletion

• How can data be removed from a hash table?

• If chaining is used, the deletion of an element entails deleting 
the node from the linked list holding the element

• For the other techniques we’ve considered, deletion usually 
involves more careful handling of collision issues, unless a 
perfect hash function is used

• This is illustrated in Figure 10.10a, which stores keys using 
linear probing

• In Figure 10.10b, when A4 is deleted, attempts to find B4 check 
location 4, which is empty, indicating B4 is not in the table

• A similar situation occurs in Figure 10.10c, when A2 is deleted, 
causing searches for B1 to stop at position 2

Data Structures and Algorithms in C++, Fourth Edition 40

Preview from Notesale.co.uk

Page 40 of 89



Deletion (continued)

Fig. 10.10 Linear search in the situation where both insertion and deletion of keys are permitted

– A solution to this is to leave the deleted keys in the table with some 
type of indicator that the keys are not valid

– This way, searches for elements won’t terminate prematurely

– When new keys are inserted, they can overwrite the marked keys

Data Structures and Algorithms in C++, Fourth Edition 41

Preview from Notesale.co.uk

Page 41 of 89



Perfect Hash Functions (continued)

• Cichelli’s Method

– Richard J. Cichelli developed one technique for constructing minimal 
perfect hash functions in 1980

– It is used to hash fairly small number of reserved words, and has the 
form

h(word) = (length(word) + g(firstletter(word)) + g(lastletter(word))) mod TSize

– In the expression, g is the function to be constructed; it assigns values 
to letters to the function h returns unique hash values

– The values that g assigns to particular letters do not have to be unique

– There are three parts to the algorithm: computation of letter 
occurrences, ordering words, and searching

– The last step is critical, and uses an auxiliary function, try()

Data Structures and Algorithms in C++, Fourth Edition 46

Preview from Notesale.co.uk

Page 46 of 89



Perfect Hash Functions (continued)

• Cichelli’s Method (continued)
– Another modification partitions the body of data into separate buckets 

for which minimal perfect hash functions are found

– The partitioning is carried out by a grouping function, gr, which 
indicates the bucket each word belongs to

– A general hash function of the form

h(word) = bucketgr(word) + hgr(word)(word)

is then generated, as suggested by Ted Lewis and Curtis Cook (1986)

– The drawback to this approach is the difficulty in finding grouping 
functions that support the creation of minimal perfect hash functions

– Both of these approaches are not completely successful if they rely on 
the algorithm developed by Cichelli

– Although Cichelli advocated brute force as a last resort, most efforts 
focus on finding more efficient searching algorithms, such as the FHCD

Data Structures and Algorithms in C++, Fourth Edition 51

Preview from Notesale.co.uk

Page 51 of 89



Perfect Hash Functions (continued)

• The FHCD Algorithm (continued)
– Next, a random g(h1) value must be found that will produce two 

numbers other than 2 when h computes the hash function for the two 
words, because location 2 is occupied

– For purposes of the example, assume the number is 4, so h(Calliope) = 
1 and h(Melpomene) = 4

– A summary of these steps is shown in Figure 10.12d; Figure 10.12e 
shows the values of the function g

– By means of this function g, the function h becomes a minimal perfect 
hash function

– However, g has to be stored as a table so it can be used every time 
function h is needed, because it is presented as a table and not a 
formula

– This may not be straightforward

Data Structures and Algorithms in C++, Fourth Edition 60

Preview from Notesale.co.uk

Page 60 of 89



Hash Functions for Extendible Files
(continued)

• There are some hashing techniques that take into account 
variable sizes of tables or files

• These fall into two groups: directory and directoryless

• In directory schemes, a directory or index of keys controls 
access to the keys themselves

• There are a number of techniques that fall into this category
– Expandable hashing, developed by Gary D. Knott in 1971

– Dynamic hashing, developed by Per-Âke Larson in 1978

– Extendible hashing, developed by Ronald Fagin and others in 1979

• All of these distribute keys among buckets in similar ways

• The structure of the directory or index is the main difference

Data Structures and Algorithms in C++, Fourth Edition 71

Preview from Notesale.co.uk

Page 71 of 89



Hash Functions for Extendible Files
(continued)

• Extendible Hashing (continued)
– This is illustrated in Figure 10.14b; when a key with h value 11001 

arrives, the first two bits send it to the fourth directory position

– From there it goes to bucket b1, where keys whose h-values start with 
1 are stored

– This causes an overflow, splitting bucket b1 into b10, which is the new 
name for b1, and b11; their local depths are set to two

– Bucket b11 is now pointed at by the pointer in position 11, and b1’s keys 
are split between b10 and b11

– Things are more complicated if a bucket whose local depth is equal to 
the depth of the directory overflows

– Consider what happens when a key with h-value 0001 arrives at the 
table in Figure 10.14b

Data Structures and Algorithms in C++, Fourth Edition 77

Preview from Notesale.co.uk

Page 77 of 89



Hash Functions for Extendible Files
(continued)

• Linear hashing (continued)
– Current loading in Figure 10.16a is 75%, but when key 10 arrives it is 

hashed to position 1 and loading increases to 83%

– The first bucket splits and keys are distributed using function h1, 
shown in Figure 10.16b

– Of note is the fact that the first bucket has the lowest load, but was 
the first one that split

– Now assume 21 and 36 are hashed to the table, and 25 arrives as seen 
in Figure 10.16c

– The loading factor rises to 87%, so another split, this time the second 
bucket, gives rise to the configuration in Figure 10.16d

– After hashing 27 and 37 another split occurs, and this new situation is 
shown in Figure 10.16e

Data Structures and Algorithms in C++, Fourth Edition 86

Preview from Notesale.co.uk

Page 86 of 89



Hash Functions for Extendible Files
(continued)

• Linear hashing (continued)
– In this case, split reached the last allowed value on this level, so it is 

assigned the value zero, and h1 is retained for use in further hashing

– In addition, a new function, h2 is defined as K mod 4 ∙ TSize

– These steps are presented in a table on the next slide

– Note that since the order of splitting is predetermined, some overflow 
area is needed with linear hashing

– If files are used, this may lead to more than one file access

– The area can be distinct from buckets, but can also work in the fashion 
of coalesced hashing by using empty space in buckets, as suggested by 
James Mullin in 1981

– Overflow areas are not necessary in a directory scheme, but can be 
used

Data Structures and Algorithms in C++, Fourth Edition 87

Preview from Notesale.co.uk

Page 87 of 89


