Collision Resolution
cO- U

The hashing we’ve Iooked iégﬁ&@does have problems with
multiple keys h We ag% location in the table
For ex E\No n(gtlon that places names in a table
basgé on hashlgﬂée ASCII code of the first letter of the name
Using this function, all names beginning with the same letter
would hash to the same position
If we attempt to improve the function by hashing the first two
letters, we achieve better results, but still have problems
In fact, even if we used all the letters in the name, there is still
a possibility of collisions
Also, while using all the letters of the name gives a better
distribution, if the table only has 26 positions there is no
improvement in using the other versions

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (C%Qtinued)

cO:-
* So in addition to using mo@&\'@ﬁt functions, we also need

to consider thesj tabl ing hashed into
’& mé) %&

. Eveg{@aﬁ\@lél?%@eg%g)rgtee to eliminate collisions; we
hav r

to consider approaches that assure a solution

A number of methods have been developed; we will consider
a few in the following slides

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (coQtinued)

AS)
. S’a\e cO

oM W of 82

Bs, Ay B, By, G,
0 0 0| By
1 1| B, 1| B
2| A, 2| A, 2| A,
3| A 3| As 3| Ay
4 4 4
5| As 5| As 51 As
6 6 | Bs 6 | Bs
7 7 7
8 8 8| G
9 9 [A, 0 | Ag
(a) (b) (c)

Fig. 10.2 Using quadratic probing for collision resolution

Data Structures and Algorithms in C++, Fourth Edition

24

Collision Resolution (coQtinued)
oM
* Chaining tesa\e <
— In chaining, th eﬁ‘sﬁrﬂﬁ(o)t ste@gn the table, but in the info
porticm‘(é‘d\‘niegglih%o?ﬁ)dgs associated with each table position
&s

— ﬂmg%echniqu ed separate chaining, and the table is called a
scatter table

— This was the table never overflows, as the lists are extended when
new keys arrive, as can be seen in Figure 10.5

— This is very fast for short lists, but as they increase in size,
performance can degrade sharply

— Gains in performance can be made if the lists are ordered so
unsuccessful searches don’t traverse the entire list, or by using self-
organizing linked lists

— This approach requires additional space for the pointers, so if there
are a large number of keys involved, space requirements can be high

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (cothued)
oV
e Chaining (continued) tesa\e ©
— This way the n t@ﬁl’h n m t %@can be accessed with doing a
seque\rﬁ@\d‘d g
— aXh position R@’ able is an object that consists of two elements,

info for the key and next which is the index of the key that collided
with this position

— Available positions can be marked in their next fields, and a unique
value can be used to mark the end of a chain

— This does require less space than chaining, but the number of keys
that can be hashed is limited by table size

— For keys for which there is no room in the table, an overflow area
known as the cellar can be dynamically located in the arrays

— Figure 10.6 shows an example of coalesced hashing where a key ends
up in the last position in the table

Data Structures and Algorithms in C++, Fourth Edition

Deletion

co V¥
How can data be removed{@gaé%ash table?
If chaining i |s u &i} Qr?;& an element entails deleting
theﬁeégﬂ% 3@@(ist holding the element

For the other technlques we’ve considered, deletion usually
involves more careful handling of collision issues, unless a
perfect hash function is used

This is illustrated in Figure 10.10a, which stores keys using
linear probing

In Figure 10.10b, when A, is deleted, attempts to find B, check
location 4, which is empty, indicating B, is not in the table

A similar situation occurs in Figure 10.10c, when A, is deleted,
causing searches for B, to stop at position 2

Data Structures and Algorithms in C++, Fourth Edition

Deletion (contlnu%l)

ca\e o "
Insert: A;, Ay, A, By B, "e lete: A,

-‘ Omn “ 8 0
\ % (13 O | .‘i] 1 :"-'Il
P(e\, 7| A, Pagez A, 2 2 [B,

il B B, 3| B 3
4 [Ay 4 4 4| By

5 B:i 5 B-i 5 H-i 5

t 6 6 t

7 7 7 7

8 8 8 8

9 9 9 9

(a) (b) (c) (d)

Fig. 10.10 Linear search in the situation where both insertion and deletion of keys are permitted

— A solution to this is to leave the deleted keys in the table with some
type of indicator that the keys are not valid

— This way, searches for elements won’t terminate prematurely

— When new keys are inserted, they can overwrite the marked keys

Data Structures and Algorithms in C++, Fourth Edition

Perfect Hash Functions (\c)gntinued)
O.
* Cichelli’s Method Otega\e-c

— Richard J. Cich Qi@éﬂzlﬁped n‘e%%hnique for constructing minimal
perfer\t,‘(@Nflﬁwcti @IA—@Q

— igﬁsed to hﬁ\ ly small number of reserved words, and has the
form

h(word) = (length(word) + g(firstletter(word)) + g(lastletter(word))) mod TSize

— In the expression, g is the function to be constructed; it assigns values
to letters to the function h returns unique hash values

— The values that g assigns to particular letters do not have to be unique

— There are three parts to the algorithm: computation of letter
occurrences, ordering words, and searching

— The last step is critical, and uses an auxiliary function, try ()

Data Structures and Algorithms in C++, Fourth Edition

* Cichelli’s Method (continue{@sa\e‘

Perfect Hash Functions (cgntinued)
coV

Another modi%:‘aéqﬁ\p»\t%onﬁ %&)ody of data into separate buckets
for whi imal e@%a% functions are found

ag%artitionh% @érried out by a grouping function, gr, which
indicates the bucket each word belongs to

A general hash function of the form

h(word) = bucket

gr(word) +h gr(word)(Wor d)

is then generated, as suggested by Ted Lewis and Curtis Cook (1986)

The drawback to this approach is the difficulty in finding grouping
functions that support the creation of minimal perfect hash functions

Both of these approaches are not completely successful if they rely on
the algorithm developed by Cichelli

Although Cichelli advocated brute force as a last resort, most efforts
focus on finding more efficient searching algorithms, such as the FHCD

Data Structures and Algorithms in C++, Fourth Edition

Perfect Hash Functions (\c)gntinued)
* The FHCD Algorithm (conéc)i;eégﬂ\e <0

— Next, a rando @ma e mu‘tggound that will produce two
numbsﬁ@\hlert an év@& Qcomputes the hash function for the two

W&gs, becaus@l@eglon 2 is occupied

— For purposes of the example, assume the number is 4, so h(Calliope) =
1 and h(Melpomene) = 4

— A summary of these steps is shown in Figure 10.12d; Figure 10.12e
shows the values of the function g

— By means of this function g, the function h becomes a minimal perfect
hash function

— However, g has to be stored as a table so it can be used every time
function h is needed, because it is presented as a table and not a
formula

— This may not be straightforward

Data Structures and Algorithms in C++, Fourth Edition

Hash Functions for Extendible Files

(contimeg_@)) VK

So
There are some hqﬁm@@}% '@@S that take into account

variable&i\@g\bi&{a I%sfmfi@

Thege(all into 8/@‘ roups: directory and directoryless

In directory schemes, a directory or index of keys controls
access to the keys themselves

There are a number of techniques that fall into this category
— Expandable hashing, developed by Gary D. Knott in 1971
— Dynamic hashing, developed by Per-Ake Larson in 1978
— Extendible hashing, developed by Ronald Fagin and others in 1979

All of these distribute keys among buckets in similar ways
The structure of the directory or index is the main difference

Data Structures and Algorithms in C++, Fourth Edition

 Extendible Hashln DA o}
((\wlﬂ{ll efé

Hash Functions for Extendible Files

(contlmegda) VK

(eSS

This i @\Nt in g b when a key with h value 11001
Ql’(\%s the fll’? its send it to the fourth directory position

From there it goes to bucket b;, where keys whose h-values start with
1 are stored

This causes an overflow, splitting bucket b, into b,,, which is the new
name for b,, and b,;; their local depths are set to two

Bucket b,, is now pointed at by the pointer in position 11, and b,’s keys
are split between b, and b,

Things are more complicated if a bucket whose local depth is equal to
the depth of the directory overflows

Consider what happens when a key with h-value 0001 arrives at the
table in Figure 10.14b

Data Structures and Algorithms in C++, Fourth Edition

Hash Functions for Extendible Files

(contlmegda) VK

e Linear hashing %cocg%m&é@te

Curre?{@ﬁ‘n inF r%ﬁi) i%a is 75%, but when key 10 arrives it is

%XI% to pos@cﬁ and loading increases to 83%

The first bucket splits and keys are distributed using function h,,
shown in Figure 10.16b

Of note is the fact that the first bucket has the lowest load, but was
the first one that split

Now assume 21 and 36 are hashed to the table, and 25 arrives as seen
in Figure 10.16c

The loading factor rises to 87%, so another split, this time the second
bucket, gives rise to the configuration in Figure 10.16d

After hashing 27 and 37 another split occurs, and this new situation is
shown in Figure 10.16e

Data Structures and Algorithms in C++, Fourth Edition

Hash Functions for Extendible Files

(contlmegda) VK

e Linear hashing &co &é@t

— In thi q@sz re e@qhe(?ast aIIowed value on this level, so it is
@&&\ed the \@@ ro and h, is retained for use in further hashing

— In addition, a new function, h, is defined as K mod 4 - TSize
— These steps are presented in a table on the next slide

— Note that since the order of splitting is predetermined, some overflow
area is needed with linear hashing

— If files are used, this may lead to more than one file access

— The area can be distinct from buckets, but can also work in the fashion
of coalesced hashing by using empty space in buckets, as suggested by
James Mullin in 1981

— Overflow areas are not necessary in a directory scheme, but can be
used

Data Structures and Algorithms in C++, Fourth Edition

