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Preface

Shortly after 9/11, a Russian scientist named Dmitri Gusev pro-
posed an explanation for the origin of  the name Al Qaeda. He
suggested that the terrorist organization took its name from Isaac
Asimov’s famous 1950s science fiction novels known as the Foun-
dation Trilogy. After all, he reasoned, the Arabic word “qaeda”
means something like “base” or “foundation.” And the first novel in
Asimov’s trilogy, Foundation, apparently was titled “al-Qaida” in an
Arabic translation.

In Asimov’s books, “Foundation” referred to an organization
dedicated to salvaging a decaying galactic empire. The empire was
hopeless, destined to crumble into chaos, leaving civilization in
ruins for 30,000 years. Foreseeing the inevitability of  the empire’s
demise, one man devised a plan to truncate the coming era of
darkness to a mere millennium. His strategy was to establish a
“foundation” of  scholars who would preserve human knowledge
for civilization’s eventual rebirth.

At least that’s what he told the empire’s authorities.
In fact, Asimov’s hero, a mathematician named Hari Seldon,

created a community of  scientists devoted to manipulating the fu-
ture. Seldon actually formed two foundations—one in a remote
but known locale (sort of  like Afghanistan), the other in a mystery
location referred to only with riddles. Foundation I participated
openly in the affairs of  the galaxy. Foundation II operated surrep-
titiously, intervening at key points in history to nudge events along
Seldon’s chosen path.

Seldon’s plan for controlling human affairs was based on a
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PREFACE v

links with the physical sciences as well, and ultimately, I suspect, it
will forge a merger of  all the sciences in the spirit of  Asimov’s
psychohistory. At least that is the prospect that I explore in this
book.

Game theory is a rich, profound, and controversial field, and
there is much more to it than you could find in any one book.
What follows is in no way a textbook on game theory. Nor do I
attempt to give any account of  its widespread uses in economics,
the realm for which it was invented, or the many variants and
refinements that have been developed to expand its economic ap-
plications. My focus is rather on how various manifestations of
game theory built on Nash’s foundation are now applied in a vast
range of  other scientific disciplines, with special attention to those
arenas where game theory illuminates human nature and behavior
(and where it connects with other fields seeking similar insights). I
view these efforts in the context of  the ancient quest for a “Code
of  Nature” describing the “laws” of  human behavior, a historical
precursor to Asimov’s notion of  psychohistory.

As with all my books, I try to give any interested reader a
flavor of  what scientists are doing at the frontiers of  knowledge,
where there are no guarantees of  ultimate success, but where pio-
neers are probing intriguing possibilities. There are scientists who
regard some of  this pioneering work as at best misguided and at
worst a fruitless waste of  time. Consequently, there may be objec-
tions from traditionalists who believe that the importance of  game
theory is overstated or that the prospects for a science of  society
are overhyped. Well, maybe so. Time will tell. For now, the fact is
that game theory has already established itself  as an essential tool
in the behavioral sciences, where it is widely regarded as a unifying
language for investigating human behavior. Game theory’s promi-
nence in evolutionary biology builds a natural bridge between the
life sciences and the behavioral sciences. And connections have
been established between game theory and two of  the most promi-
nent pillars of  physics: statistical mechanics and quantum theory.
Certainly many physicists, neuroscientists, and social scientists from
various disciplines are indeed pursuing the dream of  a quantitative
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4 A BEAUTIFUL MATH

quantifying human experience,” says neuroscientist Read
Montague, “in the same way we quantify airflow over the wings of
a Boeing 777.”5

In short, Nash’s math—with the rest of  modern game theory
built around it—is now the weapon of  choice in the scientist’s
arsenal on a wide range of  research frontiers related to human
behavior. In fact, Herbert Gintis contends, game theory has be-
come “a universal language for the unification of  the behavioral
sciences.”6

I think it might go even farther than that. Game theory may
become the language not just of  the behavioral sciences, but of  all
the sciences.

As science stands today, that claim is rather bold. It might even
be wrong. But game theory already has conquered the social sci-
ences and invaded biology. And it is now, in the works of  a few
pioneering scientists, forming a powerful alliance with physics.
Physicists, of  course, have always sought a unity in the ultimate
description of  nature, and game theory may have the potential to
be a great unifier.

That realization hit me in early 2004, when I read a paper by
physicist-mathematician David Wolpert, who works at NASA’s
Ames Research Center in California. Wolpert’s paper disclosed a
deep connection between the math of  game theory and statistical
mechanics, one of  the most powerful all-purpose tools used by
physicists for describing the complexities of  the world.

Physicists have used statistical mechanics for more than a cen-
tury to describe such things as gases, chemical reactions, and the
properties of  magnetic materials—essentially to quantify the be-
havior of  matter in all sorts of  circumstances. It’s a way to describe
the big picture when lacking data about the details. You can’t track
every one of  the trillion trillion molecules of  air zipping around in
a room, for instance, but statistical mechanics can tell you how an
air conditioner will affect the overall temperature.

It’s no coincidence that statistical mechanics (which encom-
passes the kinetic theory of  gases) is the math that inspired
Asimov’s heroic mathematician, Hari Seldon, to invent psycho-
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Smith’s Hand
Searching for the Code of Nature

If  in the seventeenth century natural philosophers

borrowed notions of  law in human affairs and ap-

plied them to the study of  physical nature, in the

eighteenth century it was the turn of  the laws of

physical nature to suggest ways forward for knowl-

edge about human life.

—Roger Smith, The Norton History of  the Human Sciences

Colin Camerer was a child prodigy, one of  those kids who skipped
several grades of  school and enrolled in a special program for the
gifted. By age 5, he was reading Time magazine (even though no
one had taught him to read), and at 14 he entered Johns Hopkins
University. He graduated in three years, then went to the Univer-
sity of  Chicago to earn an M.B.A. and, for good measure, a Ph.D.
He joined the faculty at Northwestern University’s graduate school
of  management by the age of  22.

Today, he’s a full-fledged adult on the faculty at Caltech, where
he likes to play games. Or more accurately, he likes to analyze the
behavior of  other people during various game-playing experi-
ments. Camerer is one of  the nation’s premier behavioral game
theorists. He studies how game theory reveals the realities of  hu-
man economic behavior, how people in real life depart from the
purely rational choices assumed by traditional economic theory.
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14 A BEAUTIFUL MATH

lectual leap to make his system fly. “In order to discover such a
science as economics,” they wrote, “Smith had to posit a faith in
the orderly structure of  nature, underlying appearances and acces-
sible to man’s reason.”1

Viewed in these terms, Smith’s book was an important thread
in a fabric of  thought seeking a Code of  Nature, a system of  rules
that explained human behavior (economic and otherwise) in much
the same way that Newton had explained the cosmos. First phi-
losophers, and then later sociologists and psychologists, tried to
articulate a science of  human behavior based on principles “under-
lying appearances” but “accessible to man’s reason.” Smith’s efforts
reflected the influence of  his friend and fellow Scotsman David
Hume, the historian-philosopher who regarded a “science of  man”
as the ultimate goal of  the scientific enterprise. “There is no ques-
tion of  importance, whose decision is not comprised in the science
of  man,” Hume wrote, “and there is none, which can be decided
with any certainty, before we become acquainted with that sci-
ence.”2  In the attempt “to explain the principles of  human nature,
we in effect propose a compleat system of  the sciences.”

Today, game theory’s ubiquitous role in the human sciences
suggests that its ambitions are woven from that same fabric. Game
theory may, someday, turn out to be the foundation of  a new and
improved 21st-century version of  the Code of  Nature, fulfilling
the dreams of  Hume, Smith, and many others in centuries past.

That claim is enhanced, I think, with the realization
that threads of  Smith’s thought are entangled not only in physical
and social science, but biological science as well. Smith’s ideas ex-
erted a profound influence on Charles Darwin. Principles describ-
ing competition in the economic world, Darwin realized, made
equal sense when applied to the battle for survival in the biological
arena. And the benefits of  the division of  labor among workers
that Smith extolled meshed nicely with the appearance of  new
species in nature. So it is surely no accident that, today, applying
economic game theory to the study of  evolution is a major intel-
lectual industry.
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SMITH’S HAND 19

promoted by many of  Smith’s disciples—that Smith had revealed
“a natural order of  things,” an “offshoot of  the ancient fiction of  a
Code of  Nature.”

This idea of  a “code of  natural law” had been around since
Roman times, with possible Greek antecedents. The Roman legal
system recognized not only Roman civil law (Jus Civile), the spe-
cific legal codes of  the Romans, but a more general law (Jus Gen-
tium), consisting of  laws arising “by natural reason” that are
“common to all mankind,” as described by Gaius, a Roman jurist
of  the second century A.D.

Apparently some Roman legal philosophers regarded Jus Gen-
tium as the offspring of  a forgotten “natural law” (Jus Naturale) or
“Code of  Nature”—an assumed primordial “government-free” le-
gal code shared by all nations and peoples. Human political insti-
tutions, in this view, disturb “a beneficial and harmonious natural
order of  things.” So as near as I can tell, “Code of  Nature” is what
people commonly refer to today as the law of  the jungle.9  (Per-
haps the FOX network will develop it as the next new reality-TV
series.) “The belief  gradually prevailed among the Roman lawyers
that the old Jus Gentium was in fact the lost code of  Nature,” En-
glish legal scholar Henry Maine wrote in an 1861 treatise titled
Ancient Law. “Framing . . . jurisprudence on the principles of  the Jus
Gentium was gradually restoring a type from which law had only
departed to deteriorate.”10

In any event, as Cliffe Leslie recounted, the “Code of  Nature”
idea was, in Smith’s day, one of  two approaches to grasping “the
fundamental laws of  human society.” The Code of  Nature method
sought to reason out the laws of  society by deducing the natural
order of  things from innate features of  the human mind. The other
approach “induced” societal laws by examining history and fea-
tures of  real life to find out how things actually are, rather than
some idealized notion of  how human nature should be.

In fact, Smith’s work did express sentiments favorable to the
Code of  Nature view; his statement that eliminating governmental
preferences and restraints allows “the obvious and simple system
of  natural liberty” to establish itself  clearly resonates with the con-
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VON NEUMANN’S GAMES 29

Of  course, he accomplished plenty anyway. Von Neumann
produced the standard mathematical formulation of  quantum
mechanics, for instance. He didn’t exactly invent the modern
digital computer, but he improved it and pioneered its use for sci-
entific research. And, apparently just for kicks, he revolutionized
economics.

Born in 1903 in Hungary, von Neumann was given the name
Janos but went by the nickname Jancsi. He was the son of  a banker
(who had paid for the right to use the honorific title von). As a
child, Jancsi dazzled adults with his mental powers, telling jokes in
Greek and memorizing the numbers in phone books. Later he en-
rolled in the University of  Budapest as a math major, but didn’t
bother to attend the classes—at the same time, he was majoring in
chemistry at the University of  Berlin. He traveled back to Budapest
for exams, aced them, and continued his chemical education, first
at Berlin and then later at the University of  Zurich.

I’ve recounted some of  von Neumann’s adult intellectual esca-
pades before (in my book The Bit and the Pendulum), such as the time
when he was called in as a consultant to determine whether the
Rand Corporation needed a new computer to solve a difficult prob-
lem. Rand didn’t need a new computer, von Neumann declared,
after solving the problem in his head. In her biography of  John
Nash, Sylvia Nasar relates another telling von Neumann anecdote,
about a famous trick-question math problem. Two cyclists start out
20 miles apart, heading for each other at 10 miles an hour. Mean-
while a fly flies back and forth between the bicycles at 15 miles an
hour. How far has the fly flown by the time the bicycles meet? You
can solve it by adding up the fly’s many shorter and shorter paths
between bikes (this would be known in mathematical terms as sum-
ming the infinite series). If  you detect the trick, though, you can
solve the problem in an instant—it will take the bikes an hour to
meet, so the fly obviously will have flown 15 miles.

When jokesters posed this question to von Neumann, sure
enough, he answered within a second or two. Oh, you knew the
trick, they moaned. “What trick?” said von Neumann. “All I did
was sum the infinite series.”
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VON NEUMANN’S GAMES 31

Bentham, utility was roughly identical to happiness or pleasure—
in “maximizing their utility,” individual people would seek to in-
crease pleasure and diminish pain. For society as a whole, maximum
utility meant “the greatest happiness of  the greatest number.”3

Bentham’s utilitarianism incorporated some of  the philosophical
views of  David Hume, friend to Adam Smith. And one of
Bentham’s influential followers was the British economist David
Ricardo, who incorporated the idea of  utility into his economic
philosophy.

In economics, utility’s usefulness depends on expressing it
quantitatively. Happiness isn’t easily quantifiable, for example, but
(as Bentham noted) the means to happiness can also be regarded as
a measure of  utility. Wealth, for example, provides a means of
enhancing happiness, and wealth is easier to measure. So in eco-
nomics, the usual approach is to measure self-interest in terms of
money. It’s a convenient medium of  exchange for comparing the
value of  different things. But in most walks of  life (except perhaps
publishing), money isn’t everything. So you need a general defini-
tion that makes it possible to express utility in a useful mathemati-
cal form.

One mathematical approach to quantifying utility came along
long before Bentham, in a famous 1738 result from Daniel
Bernoulli, the Swiss mathematician (one of  many famous
Bernoullis of  that era). In solving a mathematical paradox about
gambling posed by his cousin Nicholas, Daniel realized that utility
does not simply equate to quantity. The utility of  a certain amount
of  money, for instance, depends on how much money you already
have. A million-dollar lottery prize has less utility for Bill Gates
than it would for, say, me. Daniel Bernoulli proposed a method for
calculating the reduction in utility as the amount of  money
increased.4

Obviously the idea of  utility—what you want to maximize—
can sometimes get pretty complicated. But in many ordinary situa-
tions, utility is no mystery. If  you’re playing basketball, you want
to score the most points. In chess, you want to checkmate your
opponent’s king. In poker, you want to win the pot. Often
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VON NEUMANN’S GAMES 39

if  the Minnow had beached on Crusoe’s island, each new player
would have brought an additional set of  variables of  his or her
own into the game. Then Crusoe would need to take all of  those
new variables into account, too.

On top of  all that, more players means a more complex
economy, more kinds of  goods and services, different methods of
production. So the social economy rapidly becomes a mathemati-
cal nightmare, it would seem, beyond even the ability of  the know-
it-all Professor to resolve. But there is hope, for economics and for
understanding society, and it’s a hope that’s based on the simple
idea of  taking a temperature.

TAKING SOCIETY’S TEMPERATURE

In drawing analogies between economics and physics, von
Neumann and Morgenstern talked a lot about the theory of  heat
(or, as it is more pretentiously known, thermodynamics). They
pointed out, for instance, that measuring heat precisely did not
lead to a theory of  heat; physicists needed the theory first, in order
to understand how to measure heat in an unambiguous way. In a
similar way, game theory needed to be developed first to give
economists the tools they needed to measure economic variables
properly.

The example of  the theory of  heat played another crucial
role—in articulating a basic issue within game theory itself. At the
outset, von Neumann and Morgenstern made it clear that they did
not want to venture into the philosophical quagmire of  defining
all the nuances of  utility. For them, to develop game theory for use
in economics, it was enough to equate utility with money. For the
businessman, money (as in profits) is a logical measure of  utility;
for consumers, income (minus expenses) is a good measure of  util-
ity, or you could think of  the utility of  an object as the price you
were willing to pay for it. And money can be used as a currency for
translating what anyone wants into more specific objects or events
or experiences or whatever. So equating utility with money is a
convenient simplifying assumption, allowing the theory to focus
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VON NEUMANN’S GAMES 45

does. And Bob will choose the bus also, because it minimizes his
losses, no matter what Alice does. Walking can do no better and
might be worse.

Of  course, you didn’t need game theory to figure this out. So
let’s look at another example, from real-world warfare, a favorite
of  game theory textbooks.

In World War II, General George Kenney knew that the Japa-
nese would be sending a convoy of  supply ships to New Guinea.
The Allies naturally wanted to bomb the hell out of  the convoy.
But the convoy would be taking one of  two possible routes—one
to the north of  New Britain, one to the south.

Either route would take three days, so in principle the Allies
could get in three days’ worth of  bombing time against the con-
voy. But the weather could interfere. Forecasters said the northern
route would be rainy one of  the days, limiting the bombing time
to a maximum of  two days. The southern route would be clear,
providing visibility for three days of  bombing. General Kenney
had to decide whether to send his reconnaissance planes north or
south. If  he sent them south and the convoy went north, he would
lose a day of  bombing time (of  only two bombing days available).
If  the recon planes went north, the bombers would still have time
to get two bombing days in if  the convoy went south.

So the “payoff ” matrix looks like this, with the numbers giving
the Allies’ “winnings” in days of  bombing:

Japanese

North South

North 2 2
Allies

South 1 3
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58 A BEAUTIFUL MATH

fied with the strategy they’ve adopted, in the sense that no other
strategy would do better (as long as nobody else changes strate-
gies, either). Similarly, in social situations, stability means that ev-
erybody is pretty much content with the status quo. It may not be
that you like things the way they are, but changing them will only
make things worse. There’s no impetus for change, so like a rock in
a valley, the situation is at an equilibrium point.

In a two-person zero-sum game, you can determine the equi-
librium point using von Neumann’s minimax solution. Whether
using a pure strategy or a mixed strategy, neither player has any-
thing to gain by deviating from the optimum strategy that game
theory prescribes. But von Neumann did not prove that similarly
stable solutions could be found when you moved from the
Robinson Crusoe–Friday economy to the Gilligan’s Island
economy or Manhattan Island economy. And as you’ll recall, von
Neumann thought the way to analyze large economies (or games)
was by considering coalitions among the players.

Nash, however, took a different approach—deviating from the
“party line” in game theory, as he described it decades later. Sup-
pose there are no coalitions, no cooperation among the players.
Every player wants the best deal he or she can get. Is there always
a set of  strategies that makes the game stable, giving each player
the best possible personal payoff  (assuming everybody chooses
the best available strategy)? Nash answered yes. Borrowing a clever
piece of  mathematical trickery known as a “fixed-point theorem,”
he proved that every game of  many players (as long as you didn’t
have an infinite number of  players) had an equilibrium point.

Nash derived his proof  in different ways, using either of  two
fixed-point theorems—one by Luitzen Brouwer, the other by
Shizuo Kakutani. A detailed explanation of  fixed-point theorems
requires some dense mathematics, but the essential idea can be
illustrated rather simply. Take two identical sheets of  paper,
crumple one up, and place it on top of  the other. Somewhere in
the crumpled sheet will be a point lying directly above the corre-
sponding point on the uncrumpled sheet. That’s the fixed point. If
you don’t believe it, take a map of  the United States and place it

Preview from Notesale.co.uk

Page 67 of 273



60 A BEAUTIFUL MATH

Von Neumann and Morgenstern, Nash politely noted in his
paper, had produced a “very fruitful” theory of  two-person zero-
sum games. Their theory of  many-player games, however, was re-
stricted to games that Nash termed “cooperative,” in the sense that
it analyzed the interactions among coalitions of  players. “Our
theory, in contradistinction, is based on the absence of  coalitions in
that it is assumed that each participant acts independently, without
collaboration or communication with any of  the others.”15  In other
words, Nash devised an “every man for himself ” version of  many-
player games—which is why he called it “noncooperative” game
theory. When you think about it, that approach pretty much sums
up many social situations. In a dog-eat-dog world, the Nash equi-
librium describes how every dog can have its best possible day.
“The distinction between non-cooperative and cooperative games
that Nash made is decisive to this day,” wrote game theorist Harold
Kuhn.16

To me, the really key point about the Nash equilibrium is that
it cements the analogy between game theory math and the laws of
physics—game theory describing social systems, the laws of  phys-
ics describing natural systems. In the natural world, everything
seeks stability, which means seeking a state of  minimum energy.
The rock rolls downhill because a rock at the top of  a hill has a
high potential energy; it gives that energy away by rolling down-
hill. It’s because of  the law of  gravity. In a chemical reaction, all
the atoms involved are seeking a stable arrangement, possessing a
minimum amount of  energy. It’s because of  the laws of  thermody-
namics.

And just as in a chemical reaction all the atoms are simulta-
neously seeking a state with minimum energy, in an economy all
the people are seeking to maximize their utility. A chemical reac-
tion reaches an equilibrium enforced by the laws of  thermody-
namics; an economy should reach a Nash equilibrium dictated by
game theory.17

Real life isn’t quite that simple, of  course. There are usually
complicating factors. A bulldozer can push the rock back up the
hill; you can add chemicals to spark new chemistry in a batch of
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74 A BEAUTIFUL MATH

at maximizing their food intake. So he cut up some white bread
into precisely weighed pieces and enlisted some friends to toss the
pieces onto the pond.

The ducks, naturally, were delighted with this experiment, so
they all rapidly paddled into position. But then Harper’s helpers
began tossing the bread onto two separated patches of  the pond.
At one spot, the bread tosser dispensed one piece of  bread every
five seconds. The second was slower, tossing out the bread balls
just once every 10 seconds.

Now, the burning scientific question was, if  you’re a duck,
what do you do? Do you swim to the spot in front of  the fast
tosser or the slow tosser? It’s not an easy question. When I ask
people what they would do, I inevitably get a mix of  answers (and
some keep changing their mind as they think about it longer).

Perhaps (if  you were a duck) your first thought would be to go
for the guy throwing the bread the fastest. But all the other ducks
might have the same idea. You’d get more bread for yourself  if  you
switched to the other guy, right? But you’re probably not the only
duck who would realize that. So the choice of  the optimum strat-
egy isn’t immediately obvious, even for people. To get the answer
you have to calculate a Nash equilibrium.

After all, foraging for food is a lot like a game. In this case, the
chunks of  bread are the payoff. You want to get as much as you
can. So do all the other ducks. As these were university ducks, they
were no doubt aware that there is a Nash equilibrium point,
an arrangement that gets every duck the most food possible when
all the other ducks are also pursuing a maximum food-getting
strategy.

Knowing (or observing) the rate of  tosses, you can calculate
the equilibrium point using Nash’s math. In this case the calcula-
tion is pretty simple: The ducks all get their best possible deal if
one-third of  them stand in front of  the slow tosser and the other
two-thirds stand in front of  the fast tosser.

And guess what? It took the ducks about a minute to figure
that out. They split into two groups almost precisely the size that
game theory predicted. Ducks know how to play game theory!
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When the experimenters complicated things—by throwing
bread chunks of  different sizes—the ducks needed to consider
both the rate of  tossing and the amount of  bread per toss. Even
then, the ducks eventually sorted themselves into the group sizes
that Nash equilibrium required, although it took a little longer.1

Now you have to admit, that’s a little strange. Game theory
was designed to describe how “rational” humans would maximize
their utility. And now it turns out you don’t need to be rational, or
even human.2  The duck experiment shows, I think, that there’s
more to game theory than meets the eye. Game theory is not just a
clever way to figure out how to play poker. Game theory captures
something about how the world works.

At least the biological world. And it was in fact the realization
that game theory describes biology that gave it its first major scien-
tific successes. Game theory, it turns out, captures many features of
biological evolution. Many experts believe that it explains the mys-
tery of  human cooperation, how civilization itself  could emerge
from individuals observing the laws of  the jungle. And it even
seems to help explain the origin of  language, including why people
like to gossip.

LIFE AND MATH

I learned about evolution and game theory by visiting the Institute
of  Advanced Study in Princeton, home of  von Neumann during
game theory’s infancy. Long recognized as one of  the world’s pre-
mier centers for math and physics, the institute had been slow to
acknowledge the ascent of  biology in the hierarchy of  scientific
disciplines. By the late 1990s, though, the institute had decided to
plunge into the 21st century a little early by initiating a program in
theoretical biology.

Just as the newborn institute had reached across the Atlantic to
bring von Neumann, Einstein, and others to America, it recruited a
director for its biology program from Europe—Martin Nowak, an
Austrian working at the University of  Oxford in England. Nowak
was an accomplished mathematical biologist who had mixed bio-
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sites and their hosts to out-and-out altruism that people often ex-
hibit toward total strangers. Human civilization could never have
developed as it has without such widespread cooperation; finding
the Code of  Nature describing human social behavior will not be
possible without understanding how that cooperation evolved. And
the key clues to that understanding are coming from game theory.

GAMES OF LIFE

In the 1960s, even before most economists took game theory seri-
ously, several biologists noticed that it might prove useful in ex-
plaining aspects of  evolution. But the man who really put
evolutionary game theory on the scientific map was the British
biologist John Maynard Smith.

 He was “an approachable man with unruly white hair and
thick glasses,” one of  his obituaries noted, “remembered by col-
leagues and friends as a charismatic speaker but deadly debater, a
lover of  nature and an avid gardener, and a man who enjoyed
nothing better than discussing scientific ideas with young research-
ers over a glass of  beer in a pub.”4  Unfortunately I never had a
chance to have a beer with him. He died in 2004.

Maynard Smith was born in 1920. As a child, he enjoyed col-
lecting beetles and bird-watching, foreshadowing his future bio-
logical interests. At Eton College he was immersed in mathematics
and then specialized in engineering at Cambridge University. Dur-
ing World War II he did engineering research on airplane stability,
but after the war he returned to biology, studying zoology under
the famed J. B. S. Haldane at University College London.

In the early 1970s, Maynard Smith received a paper to review
that had been submitted to the journal Nature by an American re-
searcher named George Price. Price had attempted to explain why
animals competing for resources did not always fight as ferociously
as they might have, a puzzling observation if  natural selection
really implied that they should fight to the death if  only the fittest
survive. Price’s paper was too long for Nature, but the issue re-
mained in the back of  Maynard Smith’s mind. A year later, while
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of  players. Further studies suggest why the human race might have
evolved to include punishers.

In one such test of  a public goods game,18  most players began
by giving up an average of  half  their points. After several rounds,
though, contributions dropped off. In one test, nearly three-fourths
of  the players donated nothing by round 10. It appeared to the
researchers that people became angry at others who donated too
little at the beginning, and retaliated by lowering their own dona-
tions—punishing everybody. That is to say, more of  the players
became reciprocators.

But in another version of  the game, a researcher announced
each player’s contribution after every round and solicited com-
ments from the rest of  the group. When low-amount donors were
ridiculed, the cheapskates coughed up more generous contribu-
tions in later rounds. When nobody criticized the low donors, later
contributions dropped. Shame, apparently, induced improved be-
havior.

Other experiments consistently show that noncooperators risk
punishment. So it may have been in the evolutionary past that
groups containing punishers—and thus more incentive for coop-
eration—outsurvived groups that did not practice punishment. The
tendency to punish may therefore have become ingrained in sur-
viving human populations, even though the punishers do so at a
cost to themselves. (“Ingrained” might not be just in the genes,
though—many experts believe that culture transmits the punish-
ment attitude down through the generations.)

Of  course, it’s not so obvious what form that punishment
might have taken back in the human evolutionary past. Bowles
and Gintis have suggested that the punishment might have
consisted of  ostracism, making the cost to the punisher relatively
low but still inflicting a significant cost on the noncooperator.
They show how game theory interactions would naturally lead
societies to develop with some proportion of  all three types—
noncooperators (free riders), cooperators, and punishers (recipro-
cators)—just as other computer simulations have shown. The
human race plays a mixed strategy.
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As the 20th century progressed, both Freudianism and behav-
iorism faded. The black box concealing the brain turned translu-
cent as molecular medicine revealed some of  its inner workings.
Nowadays the brain is almost transparent, thanks to a variety of
scanning technologies that produce images of  the brain in action.
And so the infant neuroscience that Freud abandoned over a cen-
tury ago has now matured, nearly to the point of  fulfilling his
original intention.

Freud could not have dreamed about merging neuroscience
with economics, though, for he died before the rise of  game theory.
And even though they regarded game theory as a window into
human behavior, game theory’s originators themselves did not
imagine that their math would someday advance the cause of  brain
science. The original game theorists would not have predicted that
game theory could someday partner with neuroscience, or that
such a partnership would facilitate game theory’s quest to conquer
economics.1  But in the late 1990s, game theory turned out to be
just the right math for bringing neuroscience and economics to-
gether, in a new hybrid field known as neuroeconomics.

BRAINS AND ECONOMICS

One of  the appealing features of  game theory is the way it reflects
so many aspects of  real life. To win a game, or survive in the
jungle, or succeed in business, you need to know how to play your
cards. You have to be clever about choosing whether to draw or
stand pat, bet or pass, or possibly bid nillo. You have to know when
to hold ’em and know when to fold ’em. And usually you have to
think fast. Winners excel at making smart snap judgments. In the
jungle, you don’t have time to calculate, using game theory
or otherwise, the relative merits of  fighting or fleeing, hiding or
seeking.

Animals know this. They constantly face many competing
choices from a long list of  possible behaviors, as neuroscientists
Gregory Berns and Read Montague have observed (in language
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human civilization, to explain how selfish individuals manage to
cooperate sufficiently well to establish elaborate functioning soci-
eties. Smith’s basic answer was the existence of  sympathy—the
ability of  one human to understand what another is feeling. Mod-
ern neuroscience has begun to show how sympathy works, by iden-
tifying “mirror neurons,” nerve cells in the brain that fire their
signals both in performing an action and when viewing someone
else performing that same action.

Other neuroscientific studies have identified the neural basis
of  both individual behavioral propensities and collective and co-
operative human behavior. Scientists scanning the brains of  play-
ers participating in a repeated Prisoner’s Dilemma game, for
instance, have identified regions in the brain that are active in play-
ers who prefer cooperating rather than the “purely rational” choice
to defect.14

Another study used a version of  the trust game to examine the
brains of  people who punish those who play uncooperatively (by
keeping all the money instead of  returning a fair share). In this
game, players who feel cheated may assess a fine on the defector
(even though they must pay the price of  reducing their own earn-
ings by half  the amount of  the fine they impose). People who
choose to fine the defector display extra activity in a brain region
associated with the expectation of  reward. That suggests that some
people derive pleasure from punishing wrongdoers—the payoff  is
in personal satisfaction, not in money. In the early evolution of
human society, such “punishers” would serve a useful purpose to
the group by helping to ostracize the untrustworthy noncoopera-
tors, making life easier for the cooperators. (Since this punishment
is costly to the individual but beneficial to the group as a whole, it
is known as “altruistic punishment.”)15

Such studies highlight an essential aspect of  human behavior
that a universal Code of  Nature must accommodate—namely that
people do not all behave alike. Some players prefer to cooperate
while others choose to defect, and some players show a stronger
desire than others to inflict punishment. A Code of  Nature must
accommodate a mixture of  individually different behavioral ten-

Preview from Notesale.co.uk

Page 116 of 273



116 A BEAUTIFUL MATH

CULTURAL DIVERSITY

This cross-cultural game theory research clearly shows that people
in many cultures do not play economic games in the selfish way
that traditional economic textbooks envision. And it appears that
the differences in behavior are indeed rooted in culture-specific
aspects of  the group’s daily life. Individual differences among the
members of  a group—such as sex, age, education, and even per-
sonal wealth—did not affect the likelihood of  rejecting an offer
very much. Such choices apparently depend not so much on indi-
vidual idiosyncrasies as on the sorts of  economic activity a society
engages in. In particular, average offers seemed to reflect a society’s
amount of  commerce with other groups. More experience partici-
pating in markets, the research suggested, produces not cutthroat
competition, but a greater sense of  fairness.

The stingy Machiguenga, for instance, are economically de-
tached from most of  the world—in fact, they hardly ever interact
with anyone outside their own families. So their market-based eco-
nomic activity is very limited, and their behavior is selfish. In cul-
tures with more “market integration,” such as the cattle-trading
Orma in Kenya, ultimatum game offers are generally higher, aver-
aging 44 percent of  the pot and often are as much as half.

Orma average offers are similar to those found with American
college students. But sometimes students make low offers, and the
Orma rarely do. College students find their low offers are usually
rejected, but in some societies any offer is accepted, no matter how
low. Among the Torguud Mongols of  western Mongolia, for ex-
ample, a low offer is rarely refused. Even so, Torguud offers aver-
aged between 30 and 40 percent—despite the fact that the offerer
would surely get more by offering less. Apparently the local Mon-
golian culture values fairness more than money. At the same time,
inflicting punishment (by rejecting an offer) is not highly regarded
there, either.

In society after society, the anthropologists discovered differ-
ent ways in which cultural considerations dictated unselfish behav-
ior. Among the Aché of  Paraguay, for example, hunters often leave
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(That just means that certain conditions influenced some genetic
strains but not others.)

Mogil and collaborators concluded that the laboratory envi-
ronment plays an important role in the way mice behave, either
masking or exaggerating the effects under genetic control. And
since tail-flipping is such a simple behavior—basically a spinal
cord reflex—it’s unlikely that the environment’s influence in this
case is a fluke. More complicated behaviors would probably be
even more susceptible to environmental effects, the researchers
observed.

Results such as these strike me as similar to findings about how
humans play economic games in different ways. Genes, environ-
ment, and culture interact to produce a multiplicity of  behaviors in
mice, and in people. The human race has adopted a mixed strategy
for surviving in the world, with a diverse blend of  behavioral types.
It shouldn’t be surprising that cultures differ around the world as
well, that the planet is populated by a “mixed strategy” of  cultures,
rooted in a mixture of  influences on how behavior evolves.

A MIXED HUMAN NATURE

So what of  human nature, and game theory’s ability to describe it?
There is a human nature, but it is not the simplistic consistent
human nature described by extreme evolutionary psychologists. It
is the mixed human nature that, on reflection, should be obvious in
a world ruled by game theory. Evolution, after all, is game theory’s
ultimate experiment, where the payoff  is survival. As we’ve seen,
evolutionary game theory does not predict that a single behavioral
strategy will win the game. That would be like a society populated
by all hawks or all doves—an unstable situation, far from Nash
equilibrium. Game theory’s rules induce instead a multiplicity of
strategies, leading to a diverse menagerie of  species practicing dif-
ferent sorts of  behaviors to survive and reproduce.

Seen through the lens of  game theory, evolution’s role in hu-
man psychology is still important, but it operates more subtly than
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While Asimov’s vision remains a science fiction dream, it is
now closer to reality than probably even he would have thought
possible. The statistical approach inaugurated by Maxwell has to-
day become physicists’ favorite weapon for invading the social sci-
ences and describing human actions with math. Physicists have
applied the statistical approach to analyzing the economy, voting
behavior, traffic flow, the spread of  disease, the transmission of
opinions, and the paths people take when fleeing in panic after
somebody shouts Fire! in a crowded theater.

But here’s the thing. This isn’t a new idea, and physicists didn’t
have it first. In fact, Maxwell, who was the first to devise the statis-
tical description of  molecules, got the idea to use statistics in phys-
ics from social scientists applying math to society! So before
statistical physicists congratulate themselves for showing the way
to explaining the social sciences, they should pause to reflect on
the history of  their field. As the science journalist Philip Ball has
observed, “by seeking to uncover the rules of  collective human
activities, statistical physicists are aiming to return to their roots.”3

In fact, efforts to apply science and math to society have a rich
history, extending back several centuries. And that history contains
hints of  ideas that can, in retrospect, be seen as similar to key
aspects of  game theory—foreshadowing an eventual convergence
of  all these fields in the quest for a Code of  Nature.

STATISTICS AND SOCIETY

The idea of  finding a science of  society long predates Asimov. In a
sense it goes back to ancient times, of  course, resembling at least
partially the old notion of  a “natural law” of  human behavior or a
Code of  Nature. In early modern times, the idea received renewed
impetus from the success of  Newtonian physics, stimulating the
efforts of  Adam Smith and others as described in Chapter 1. Even
before Newton, though, the rise of  mechanistic physical science
inspired several philosophers to consider a similarly rigorous ap-
proach to society.

In medieval times, the importance of  the mechanical clock to
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pretty much the same from one year to the next, and even the
murderer’s methods showed a similar distribution.

“The actions which society stamps as crimes,” Quetelet wrote,
“are reproduced every year, in almost exactly the same numbers;
examined more closely, they are found to divide themselves into
almost exactly the same categories; and if  their numbers were suf-
ficiently large, we might carry farther our distinctions and subdivi-
sions, and should always find there the same regularity.”12  Similarly,
the rate of  crimes for different ages displayed a constant distribu-
tion, with the 21–25 age group always topping the list. “Crime
pursues its path with even more constancy than death,” Quetelet
observed.13

He warned, though, of  the dangers posed by interpreting such
statistics without sufficiently careful thought. Another researcher,
for instance, had shown that property crime in France was higher
in provinces where more children were sent to schools, and
concluded that education caused crime. It’s the sort of  reasoning
you hear today on talk radio. Quetelet correctly chastised such
stupidity.

Quetelet also repeatedly emphasized that the statistical ap-
proach could not be used to draw conclusions about any given
individual (another obvious principle that is often forgotten by
today’s media philosophers). The insurance company’s mortality
tables cannot forecast the time of  any one person’s death, for in-
stance. Nor can any single case, however odd, invalidate the gen-
eral conclusions drawn from a statistical regularity.

Quetelet’s exposition of  social statistics attracted a great deal
of  attention among scientists and philosophers. Many of  them
were aghast that he seemed to have little regard for the supposed
free will that humans exercised as they pleased. Quetelet responded
not by denying free will, but by observing that it had its limits, and
that human choice was always influenced by conditions and cir-
cumstances, including laws and moral strictures. In making the sim-
plest of  choices, Quetelet noted, our habits, needs, relationships,
and a hundred other factors buffet us from all sides. This “empire
of  causes” typically overwhelms free will, which is why, with
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using a fair coin). But there are many conceivable combinations of
totals that would give that average. Half  the trials could turn up 10
heads, for instance, while the other half  turned up zero every time.
Or you could imagine getting precisely 5 heads in every 10-flip
trial.

What actually happens is that the number of  trials with differ-
ent numbers of  heads is distributed all across the board, but with
differing probabilities—about 25 percent of  the time you’ll get 5
heads, 20 percent of  the time 4 (same for 6), 12 percent of  the
time 3 (also for 7). You would expect to get 1 head 1 percent of
the time (and no heads at all out of  a 10-flip run about 0.1 percent
of  the time, or once in a thousand). Coin tossing, in other words,
produces a probability distribution of  outcomes, not merely some
average outcome. Maxwell’s insight was that the same kind of
probability distribution governs the possible allocations of  energy
among a mess of  molecules. And game theory’s triumph was in
showing that a probability distribution of  pure strategies—a mixed
strategy—is usually the way to maximize your payoff  (or mini-
mize your losses) when your opponents are playing wisely (which
means they, too, are using mixed strategies).

Imagine you are repeatedly playing a simple game like match-
ing pennies, in which you guess whether your opponent’s penny
shows heads or tails. Your best mixed strategy is to choose heads
half  the time (and tails half  the time), but it’s not good enough
just to average out at 50-50. Your choices need to be made ran-
domly, so that they will reflect the proper probability distribution
for equally likely alternatives. If  you merely alternate the choice of
heads or tails, your opponent will soon see a pattern and exploit it;
your 50-50 split of  the two choices does you no good. If  you are
choosing with true randomness, 1 percent of  the time you’ll choose
heads 9 times out of  10, for instance.

In his book on behavioral game theory, Colin Camerer dis-
cusses studies of  this principle in a real game—tennis—where a
similar 50-50 choice arises: whether to serve to your opponent’s
right or left side. To keep your opponent guessing, you should
serve one way or the other at random.22 Amateur players tend to
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Bacon’s Links
Networks, society, and games

Unlike the physics of  subatomic particles or the large-

scale structure of  the universe, the science of  net-

works is the science of  the real world—the world of

people, friendships, rumors, disease, fads, firms, and

financial crises.

—Duncan Watts, Six Degrees

Modern science owes a lot to a guy named Bacon.
If  you had said so four centuries ago, you would have meant

Francis Bacon, the English philosopher who stressed the impor-
tance of  the experimental method for investigating nature. Bacon’s
influence was so substantial that modern science’s birth is some-
times referred to as the Baconian revolution.

Nowadays, though, when you mention Bacon and science in
the same breath you’re probably talking not about Francis, but
Kevin, the Hollywood actor. Some observers might even say that a
second Baconian revolution is now in progress.

After all, everybody has heard by now that Kevin Bacon is the
most connected actor in the movie business. He has been in so
many films that you can link almost any two actors via the net-
work of  movies that he has appeared in. John Belushi and Demi
Moore, for instance, are linked via Bacon through his roles in Ani-
mal House (with Belushi) and A Few Good Men (with Moore). Actors
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who never appeared with Bacon can be linked indirectly: Penelope
Cruz has no common films with Bacon, but she was in Vanilla Sky
with Tom Cruise, who appeared with Bacon in A Few Good Men.
By mid-2005, Bacon had appeared in films with nearly 2,000
other actors, and he could be linked in six steps or fewer to more
than 99.9 percent of  all the linked actors in a database dating back
to 1892. Bacon’s notoriety in this regard has become legendary,
even earning him a starring role in a TV commercial shown during
the Super Bowl.

Bacon’s fame inspired the renaissance of  a branch of  math-
ematics known as graph theory—in common parlance, the
math of  networks. Bacon’s role in the network of  actors motivated
mathematicians to discover new properties about all sorts of  net-
works that could be described with the tools of  statistical physics.
In particular, modern Baconian science has turned the attention of
statistical physicists to social networks, providing a new mode of
attack on the problem of  forecasting collective human behavior.

In fact, the new network math has begun to resemble a blue-
print for a science of  human social interaction, a Code of  Nature.
So far, though, the statistical physics approach to quantifying so-
cial networks has mostly paid little attention to game theory. Many
researchers believe, however, that there is—or will be—a connec-
tion. For game theory is not merely the math for analyzing indi-
vidual behavior, as you’ll recall—it also proscribes the rules by
which many complex networks form. What started out as a game
about Kevin Bacon’s network may end up as a convergence of  the
science of  networks and game theory.

SIX DEGREES

In the early 1990s, Kevin Bacon’s ubiquity in popular films caught
the attention of  some college students in Pennsylvania. They de-
vised a party game in which players tried to find the shortest path
of  movies linking Bacon to some other actor. When a TV talk
show publicized the game in 1994, some clever computer science
students at the University of  Virginia were watching. They soon
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(actor or airport) is as likely to be linked as much as any other, so
most of  them are linked to about the same degree. Only a few
would have a lot more links than average, or a lot less. If  actors
were linked randomly, their rankings by number of  links would
form a bell curve, with most of  them close to the middle. But in
many small-world networks, there is no such “typical scale” of  the
number of  links.

Such distributions—with no typical common size—are known
as “scale free.” In scale-free networks, many lonely nodes will have
hardly any connections at all, some nodes will be moderately well
connected, and a few will be superconnected hubs. To mathemati-
cians and physicists, such a scale-free distribution is a sure sign of
a “power law.”

In a groundbreaking paper published in Science in 1999, Réka
Albert and Albert-László Barabási of  Notre Dame University noted
the scale-free nature of  many kinds of  networks, and consequently
the usefulness of  power laws for describing them. The revelation
that networks could be described by power laws struck a respon-
sive chord among physicists. (They “salivate over power laws,”
Strogatz says—apparently because power law discoveries in other
realms of  physics have won some Nobel Prizes.)

Power laws describe systems that include a very few big things
and lots of  little things. Cities, for example. There are a handful of
U.S. cities with populations in the millions, a larger number of
medium-sized cities in the 100,000 to a million range, and many,
many more small towns. Same with earthquakes. There are lots of
little earthquakes, too weak to notice; a fewer number of  middling
ones that rattle the dishes; and a very few devastating shocks that
crumble bridges and buildings.

In their Science paper, Barabási and Albert showed how the
probability that a node in a scale-free network is linked to a given
number of  other nodes diminishes as the number of  links increases.
That is to say, scale-free networks possess many weakly linked
nodes, fewer with a moderate number of  links, and a handful of
monsters—like Google, Yahoo, and Amazon on the World Wide
Web. Nodes with few links are common, like small earthquakes;
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Asimov’s Vision
Psychohistory, or sociophysics?

“Humans are not numbers.” Wrong; we just do not

want to be treated like numbers.

—Dietrich Stauffer

In 1951—the same year that John Nash published his famous pa-
per on equilibrium in game theory—Isaac Asimov published the
novel Foundation. It was the first in a series of  three books (initially)
telling the story of  a decaying galactic empire and a new science
of  social behavior called psychohistory. Asimov’s books eventually
became the most famous science fiction trilogy to appear between
Lord of  the Rings and Star Wars. His psychohistory became the model
for the modern search for a Code of  Nature, a science enabling a
quantitative description and accurate predictions of  collective hu-
man behavior.1

Mixing psychology with math, psychohistory hijacked the
methods of  physics to forecast—and influence—the future course
of  social and political events. Today, dozens of  physicists and
mathematicians around the world are following Asimov’s lead,
seeking the equations that capture telling patterns in social behav-
ior, trying to show that the madness of  crowds has a method.

As a result, Asimov’s vision is no longer wholly fiction. His
psychohistory exists in a loose confederation of  research enter-
prises that go by different names and treat different aspects of  the
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Fortunately, the collisions of  molecules have their counterpart
in human interaction. While molecules collide, people connect, in
various sorts of  social networks. So while the basic idea behind
sociophysics has been around for a while, it really didn’t take off
until the new understanding of  networks started grabbing head-
lines.

Social networks have now provided physicists with the perfect
playground for trying out their statistical math. Much of  this work
has paid little heed to game theory, but papers have begun to ap-
pear exploring the way that variants on Nash’s math become im-
portant in social network contexts. After all, von Neumann and
Morgenstern themselves pointed out that statistical physics pro-
vided a model giving hope that game theory could describe large
social groups. Nash saw his concept of  game theory equilibrium in
the same terms as equilibrium in chemical reactions, which is also
described by statistical mechanics. And game theory provides the
proper mathematical framework for describing how competitive
interactions produce complex networks to begin with. So if  the
offspring of  the marriage between statistical physics and networks
is something like Asimov’s psychohistory, game theory could be
the midwife.

SOCIOCONDEMNATION

Network math offers many obvious social uses. It’s just what the
doctor ordered for tracking the spread of  an infectious disease, for
instance, or plotting vaccination strategies. And because ideas can
spread like epidemics, similar math may govern the spread of  opin-
ions and social trends, or even voting behavior.

This is not an entirely new idea, even within physics. Early
attempts to apply statistical physics to such problems met with
severe resistance, though, as Serge Galam has testified. Galam was
a student at Tel-Aviv University during the 1970s, when statistical
mechanics was the hottest topic in physics, thanks largely to some
Nobel Prize–winning work by Kenneth Wilson at Cornell Univer-
sity. Galam pursued his education in statistical physics but with a
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to find a similar analogy between particles and people that will
lead to an improved knowledge of  the functioning of  society.

SOCIOMAGNETISM

One popular example of  such an approach appeared in 2000 from
Katarzyna Sznajd-Weron of  the University of  Wroclaw in Poland.
She was interested in how opinions form and change among mem-
bers of  a society. She reasoned that the global distribution of  opin-
ions in a society must reflect the behavior and interactions of
individuals—in physics terms, the macrostate of  the system must
reflect its microstate (like the overall temperature or pressure of  a
container of  gas reflects the speed and collisions of  individual
molecules).6  “The question is if  the laws on the microscopic scale
of  a social system can explain phenomena on the macroscopic
scale, phenomena that sociologists deal with,” she wrote.7

Sznajd-Weron was well aware that people recoil when told
they are just like atoms or electrons rather than individuals with
feelings and free will. “Indeed, we are individuals,” she wrote, “but
in many situations we behave like particles.” And one of  those
common properties that people share with particles is a tendency
to be influenced by their neighbors. Sometimes what one person
does or thinks depends on what someone else is doing, just as one
particle’s behavior can be affected by other particles in its vicinity.

Sznajd-Weron related an anecdote about a New Yorker staring
upward at the sky one morning while other New Yorkers pass by,
paying no attention. Then, the next morning, four people stare
skyward, and soon others stop as well, all looking up for no reason
other than to join in the behavior of  the crowd. Such pack behav-
ior suggested to Sznajd-Weron an analogy for crowd behavior as
described by the statistical mechanics of  phase transitions, the sud-
den changes in condition such as the freezing of  water into ice.
Another sort of  phase transition, of  the type that attracted her
attention, is the sudden appearance of  magnetism in some materi-
als cooled below a certain temperature.
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patterned, contextual, and sometimes suboptimal behavior we think
of  as culture.”13

But game theory has a remarkable resilience against charges of
irrelevance. It’s explanatory power has not yet been exhausted,
even by the demands of  explaining the many versions of  human
culture. “Surprisingly,” Bednar and Page declare, “game theory is
up to the task.”14

The individuals, or agents, within a society may very well pos-
sess rational impulses driving them to seek optimum behaviors,
Bednar and Page note. But the effort to figure out optimal behav-
iors in a complicated situation is often considerable. In any given
game, a player has to consider not only the payoff  of  the “best”
strategy, but also the cost of  calculating the best moves to achieve
that payoff. With limited brain power (and everybody’s is), you
can’t always afford the cost of  calculating the most profitable
response.

Even more important, in real life you are never playing only
one game. You are in fact engaging in an ensemble of  many differ-
ent games simultaneously, imposing an even greater drain on your
brain power. “As a result,” write Bednar and Page, “an agent’s strat-
egy in one game will be dependent upon the full ensemble of
games it faces.”

So Alice and Bob (remember them?) may be participating in a
whole bunch of  other games, requiring more complicated calcula-
tions than they needed back in Chapter 2. If  they have only one
game in common, the overall demand on their calculating powers
could be very different. Even if  they face identical situations in the
one game they play together, their choices might differ, depending
on the difficulty of  all the other games they are playing at the
same time. As Bednar and Page point out, “two agents facing dif-
ferent ensembles of  games may choose distinct strategies on games
that are common to both ensembles.”

In other words, with limited brain power, and many games to
play, the “rational” thing to do is not to calculate pure, ideal game
theory predictions for your choices, but to adopt a system of  gen-
eral guidelines for behavior, like the Pirate’s Code in the Johnny
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Shubik. “Almost certainly, ‘physical’ aspects of  theories of  social
order will not simply recapitulate existing theories in physics.”16

Yet there are areas of  overlap, they note, and “striking empiri-
cal regularities suggest that at least some social order . . . is perhaps
predictable from first principles.” The role of  markets in setting
prices, allocating resources, and creating social institutions involves
“concepts of  efficiency or optimality in satisfying human desires.”
In economics, the tool for gauging efficiency and optimality in
satisfying human desires is game theory. In physics, analogous con-
cepts correspond to physical systems treated with statistical me-
chanical math. The question now is whether that analogy is
powerful enough to produce something like Asimov’s psycho-
history, a statistical physics approach to forecasting human social
interaction, a true Code of  Nature.

One possible weakness in the analogy between physics and
game theory, though, is that physics is more than just statistical
mechanics. Physics is supposed to be the science of  physical real-
ity, and physical reality is described by the weird (yet wonderful)
mathematics of  quantum mechanics. If  the physics–game theory
connection runs deep, there should be a quantum connection as
well. And there is.
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When it comes to making bets, Pascal observed, it is not
enough to know the odds of  winning or losing. You need to know
what’s at stake. You might want to take unfavorable odds if  the
payoff  for winning would be really huge, for example. Or you
might consider playing it safe by betting on a sure thing even if
the payoff  was small. But it wouldn’t seem wise to bet on a long
shot if  the payoff  was going to be meager.

Pascal framed this issue in his religious writings, specifically in
the context of  making a wager about the existence of  God. Choos-
ing to believe in God was like making a bet, he said. If  you believe
in God, and that belief  turns out to be wrong, you haven’t lost
much. But if  God does exist, believing wins you an eternity of
heavenly happiness. Even if  God is a low-probability deity, the
payoff  is so great (basically, infinite) that He’s a good bet anyway.
“Let us weigh the gain and the loss in wagering that God is,” Pascal
wrote. “Let us estimate these two chances. If  you gain, you gain all;
if  you lose, you lose nothing. Wager, then, without hesitation that
He is.”2

Pascal’s reasoning may have been theologically simplistic, but
it certainly was mathematically intriguing.3  It illustrated the kind
of  reasoning that goes into calculating the “mathematical expecta-
tion” of  an economic decision—you multiply the probability of
an outcome by the value of  that outcome. The rational choice is
the decision that computes to give the highest expected value.
Pascal’s wager is often cited as the earliest example of  a math-
based approach to decision theory.

In real life, of  course, people don’t always make their decisions
simply by performing such calculations. And when your best deci-
sion depends on what other people are deciding, simple decision
theory no longer applies—making the best bets becomes a prob-
lem in game theory. (Some experts would say decision theory is
just a special case of  game theory, in which one player plays the
game against nature.) Still, probabilities and expected payoffs re-
main intertwined with game theory in a profound and complicated
way.

For that matter, all of  science is intertwined with probability
theory in a profound way—it’s essential for the entire process of
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Wolpert is one of  those creative thinkers who refuse to be
straitjacketed by normal scientific stereotypes. He pursues his own
intuitions and interests along the amorphous edges separating (or
connecting) physics, math, computer science, and complexity
theory. I first encountered him in the early 1990s while he was
exploring the frontiers of  interdisciplinary science at the Santa Fe
Institute, discussing such issues as the limits of  computability and
the nature of  memory.

In early 2004, Wolpert’s name caught my eye when I noticed a
paper he posted on the World Wide Web’s physics preprint page.4

His paper showed how to build a bridge between game theory and
statistical physics using information theory (providing, incidentally,
one of  the key inspirations for writing this book). In fact, as
Wolpert showed in the paper that attracted my attention to this
issue in the first place, a particular approach to statistical mechan-
ics turns out to use math that is equivalent to the math for non-
cooperative games.

Wolpert’s paper noted that the particles described by statistical
physics are trying to minimize their collective energy, like the way
people in a game try to reach the Nash equilibrium that maximizes
their utility. The mixed strategies used by players to achieve a Nash
equilibrium are probability distributions, just like the distribution
of  energy among particles described by statistical physics.

After reading Wolpert’s paper, I wrote him about it and then a
few months later discussed it with him at a complexity conference
outside Boston where he was presenting some related work. I asked
what had motivated him to forge a link between game theory and
statistical physics. His answer: rejection.

Wolpert had been working on collective machine learning sys-
tems, situations in which individual computers, or robots, or other
autonomous devices with their own individual goals could be co-
ordinated to achieve an objective for the entire system. The idea is
to find a way to establish relationships between the individual
“agents” so that their collective behavior would serve the global
goal. He noticed similarities in his work to a paper published in
Physical Review Letters about nanosized computers. So Wolpert sent
off  one of  his papers to that journal.
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and subjective probability theory does not really differ in any fun-
damental respect other than its interpretation. It’s just that in some
cases it seems more convenient, or more appropriate, to use one
rather than another, as Jaynes pointed out half  a century ago.

INFORMATION AND IGNORANCE

In his 1957 paper,7  Jaynes championed the subjectivity side of  the
probability debate. He noted that both views, subjectivist and ob-
jectivist, were needed in physics, but that for some types of  prob-
lems only the subjective approach would do.

He argued that the subjective approach can be useful even when
you know nothing about the system you are interested in to begin
with. If  you are given a box full of  particles but know nothing
about them—not their mass, not their composition, not their inter-
nal structure—there’s not much you can say about their behavior.
You know the laws of  physics, but you don’t have any knowledge
about the system to apply the laws to. In other words, your igno-
rance about the behavior of  the particles is at a maximum.

Early pioneers of  probability theory, such as Jacob Bernoulli
and Laplace, said that in such circumstances you must simply as-
sume that all the possibilities are equally likely—until you have
some reason to assume otherwise. Well, that helps in doing the
calculations, perhaps, but is there any real basis for assuming the
probabilities are equal? Except for certain cases where an obvious
symmetry is at play (say, a perfectly balanced two-sided coin),
Jaynes said, many other assumptions might be equally well justi-
fied (or the way he phrased it, any other assumption would be
equally arbitrary).8

Jaynes saw a way of  coping with this situation, though, with
the help of  the then fairly new theory of  information devised by
Claude Shannon of  Bell Labs. Shannon was interested in quantify-
ing communication, the sending of  messages, in a way that would
help engineers find ways to communicate more efficiently (he
worked for the telephone company, after all). He found math that
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mittee of  supercomputers to calculate what all the players’ mixed
strategies would have to be.

In turn, that crack is exacerbated by a weakness in the cardinal
assumption underlying traditional game theory—that the players
are rational payoff  maximizers with access to all the necessary
information to calculate their payoffs. In a world where most people
can’t calculate the sales tax on a cheeseburger, that’s a tall order. In
real life, people are not “perfectly rational,” capable of  figuring out
the best money-maximizing strategy for any strategy combination
used by all the other competitors. So game theory appears to as-
sume that each player can do what supercomputers can’t. And in
fact, almost everybody recognizes that such total rationality is
unachievable. Modern approaches to game theory often assume,
therefore, that rationality is limited or “bounded.”

Game theorists have devised various ways to deal with these
limitations on Nash’s original math. An enormous amount of  re-
search, of  the highest caliber, has modified and elaborated game
theory’s original formulations into a system that corrects many of
these initial “flaws.” Much work has been done on understanding
the limits of  rationality, for instance. Nevertheless, many game
theorists often cling to the idea that “solving a game” means find-
ing an equilibrium—an outcome where all players achieve their
maximum utility. Instead of  thinking about what will happen when
the players actually play a game, game theorists have been asking
what the individual players should do to maximize their payoff.

When I visited Wolpert at NASA Ames, a year after our conver-
sation in Boston, he pointed out that the search for equilibrium
amounts to viewing a game from the inside, from the viewpoint of
one of  the participants, instead of  from the vantage point of  an
external scientist assessing the whole system. From the inside, there
may be an optimal solution, but a scientist on the outside looking
in should merely be predicting what will happen (not trying to
win the game). If  you look at it that way, you know you can never
be sure how a game will end up. A science of  game theory should
therefore not be seeking a single answer, but a probability distribu-
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tion of  answers from which to make the best possible prediction
of  how the game will turn out, Wolpert insists. “It’s going to be
the case that whenever you are given partial information about a
system, what must pop out at the other end is a distribution over
possibilities, not a single answer.”11

In other words, scientists in the past were not really thinking
about the game players as particles, at least not in the right way. If
you think about it, you realize that no physicist computing the
thermodynamic properties of  a gas worries about what an indi-
vidual molecule is doing. The idea is to figure out the bulk features
of  the whole collection of  molecules. You can’t know what each
molecule is up to, but you can calculate, statistically, the macro-
scopic behavior of  all the molecules combined. The parallel be-
tween games and gases should be clear. Statistical physicists
studying gases don’t know what individual molecules are doing,
and game theorists don’t know what individual players are think-
ing. But physicists do know how collections of  molecules are likely
to behave—statistically—and can make good predictions about
the bulk properties of  a gas. Similarly, game theorists ought to be
able to make statistical predictions about what will happen in a
game.

This is, as Wolpert repeatedly emphasizes, the way science usu-
ally works. Scientists have limited information about the systems
they are studying and try to make the best prediction possible
given the information they have. And just as a player in a game has
incomplete information about all the game’s possible strategy com-
binations, the scientist studying the game has incomplete informa-
tion about what the player knows and how the player thinks
(remember that different individuals play games in different ways).

All sciences face this sort of  problem—knowing something
about a system and then, based on that limited knowledge, trying
to predict what’s going to happen, Wolpert pointed out. “So how
does science go about answering these questions? In every single
scientific field of  endeavor, what will come out of  such an exercise
is a probability distribution.”12

From this point of  view, another sort of  mixed strategy enters
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probability distribution of  grades in a class, the maximum entropy
approach says all grade distributions are possible. But if  you know
something about the students—maybe all are honors students
who’ve never scored below a B—you can adjust the probability
distribution by adding that information into the equations. If  you
know something about a player’s temperature—the propensity to
explore different possible strategies—you can add that information
into the equations to improve your probability distribution. With
collaborators at Berkeley and Purdue, Wolpert is beginning to test
that idea on real people—or at least, college students.

“We’ve just run through some experiments on undergrads
where we’re actually looking at their temperatures, in a set of  re-
peated games—voting games in this case—and seeing things like
how does their temperature change with time. Do they actually get
more rational or less rational? What are the correlations between
different individuals’ temperatures? Do I get more rational as you
get less rational?”

If, for instance, one player is always playing the exact same
move, that makes it easier for opponents to learn what to expect.
“That suggests intuitively that if  you drop your temperature, mine
will go up,” Wolpert said. “So in these experiments our intention is
to actually look for those kinds of  effects.”

VISIONS OF PSYCHOHISTORY

Such experiments, it seemed to me, would add to the knowledge
that behavioral game theorists and experimental economists had
been accumulating (including inputs from psychology and
neuroeconomics) about human behavior. It sounded like Wolpert
was saying that all this knowledge could be fed into the probabil-
ity distribution formulas to improve game theory’s predictive
power. But before I could ask about what was really on my mind,
he launched into an elaboration that took me precisely where I
wanted to go.

“Let’s say that you know something from psychology, and
you’ve gotten some results from experiments,” he said. “Then you
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Peter could delay any desire as long as he needed to; he could conceal
any emotion. And so Valentine knew that he would never hurt her in
a fit of  rage. He would only do it if  the advantages outweighed the
risks. . . . He always, always acted out of  intelligent self-interest.1

Ender himself  represents the social actor who plays games with
a combination of  calculation and intuition, more in line with
the notion of  game theory embraced by today’s behavioral game
theorists:

“Every time, I’ve won because I could understand the way my enemy
thought. From what they did. I could tell what they thought I was
doing, how they wanted the battle to take shape. And I played off  of
that. I’m very good at that. Understanding how other people think.”2

That is, after all, what the modern science of  game theory is all
about—understanding how other people think. And consequently
being able to figure out what they will choose to do. It is also what
Isaac Asimov’s fictional psychohistory was all about, and what
the centuries-long quest by social scientists has been all about—
discerning the drumbeat to which society dances. Discovering the
Code of  Nature.

The modern search for a Code of  Nature began in the century
following Newton’s Principia, which established the laws of  mo-
tion and gravity as the rational underpinning of  physical reality.
Philosophers and political economists such as David Hume and
Adam Smith sought a science of  human behavior in the image of
Newtonian physics, pursuing the dream that people could be de-
scribed as precisely as planets. That dream persisted through the
19th century into the 20th, from Adolphe Quetelet’s desire to
describe society with numbers to Sigmund Freud’s quest for a de-
terministic physics of  the brain. Along the way, though, the phys-
ics model on which the dream was based itself  changed, morphing
from the rigid determinism of  Newton into the statistical descrip-
tions of  Maxwell—the same sorts of  statistics used, by Quetelet
and his followers, to quantify society. By the end of  the 20th cen-
tury, the quest for a Code of  Nature was taken up by physicists
who wanted to use those statistics to bring the sciences of  society
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–3p + –5(1 – p) = –6p + –4(1 – p)

Applying some elementary algebra skills, that equation can be re-
cast as:

–3p –5 +5p = –6p –4 + 4p

or

2p = 1 – 2p

so

4p = 1

Which, solving for p, shows that Alice’s optimal probability for
playing Bus is

p = 1/4

So Alice should choose Bus one time out of  4, and Walk 3 times
out of 4.

Now, Alice will not want to change strategies when

3q + 6(1 – q) = 5q + 4(1 – q)

Which, solving for q, gives Bob’s optimal probability for choosing
Bus:

3q + 6 – 6q = 5q + 4 – 4q

6 = 4q + 4

2 = 4q

q = 1/2

So Bob should choose Bus half  the time and Walk half  the time.
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Alice will not want to change strategies if

–2q + 2(1 – q) = 0q + 1(1 – q)

4q – 2 = q – 1

3q = 1

q = 1/3

So q, Bob’s probability of  playing hawk, is also 1/3. Consequently
the Nash equilibrium in this payoff  structure is to play hawk one-
third of  the time and dove two-thirds of  the time.
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Further Reading

There are dozens and dozens of  books on game theory, of  which a
handful stand out as indispensable to grasping the theory’s essen-
tial features. Those that I found most useful and illuminating:

Camerer, Colin. Behavioral Game Theory. Princeton, N.J.: Princeton
University Press, 2003.

Gintis, Herbert. Game Theory Evolving. Princeton, N.J.: Princeton
University Press, 2000.

Kuhn, Harold W. and Sylvia Nasar, eds. The Essential John Nash.
Princeton, N.J.: Princeton University Press, 2002.

Luce, R. Duncan and Howard Raiffa. Games and Decisions. New
York: John Wiley & Sons, 1957.

Williams, J.D. The Compleat Strategyst: Being a Primer on the Theory of
Games of  Strategy. New York: McGraw-Hill, 1954.

Von Neumann, John and Oskar Morgenstern. Theory of  Games and
Economic Behavior. Sixtieth-anniversary Edition. Princeton, N.J.:
Princeton University Press, 2004.

Two other readable books were very helpful:

Davis, Morton D. Game Theory: A Nontechnical Introduction. Mineola,
NY: Dover, 1997 (1983).

Poundstone, William. Prisoner’s Dilemma. New York: Anchor Books,
1992.
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which was always influenced by others, so that such isolation is really not
possible.
18. Ibid., excerpt. Available online at http://www.d.umn.edu/~revans/

PPHandouts/buckle.htm.
19. Ibid.
20. Quoted in P.M. Harman, The Natural Philosophy of  James Clerk Maxwell,

Cambridge University Press, Cambridge, 1998, p. 131.
21. James Clerk Maxwell, “Does the Progress of  Physical Science Tend to

Give Any Advantage to the Opinion of  Necessity (or Determinism) over that
of  the Contingency of  Events and the Freedom of  the Will?” Reprinted in
Lewis Campbell and William Garnett, The Life of  James Clerk Maxwell,
Macmillan and Co., London, 1882, p. 211.
22. Ignoring things like whether your opponent has a weak backhand.

BACON’S LINKS
1. www.imdb.com. There are additional actors in the database who cannot

be linked to Bacon because they appeared either alone or with no other actors
who had appeared in any other movies including actors connected to the main-
stream acting community.

2. Similar network math was developed by Anatol Rapoport, who is better
known, of  course, as a game theorist.

3. Duncan Watts and Steven Strogatz, “Collective Dynamics of  ‘Small-
World’ Networks,” Nature, 393 (June 4, 1998): 440–442.

4. Steven Strogatz, interview in Quincy, Mass., May 17, 2004.
5. These three examples were chosen because of  the availability of  full data

on their connections; at that time, C. elegans was the only example of  a nerve-
cell network that had been completely mapped (with 302 nerve cells), the
Internet Movie Data Base provided information for actor-movie links, and the
power grid diagram was on public record.

6. Watts and Strogatz, “Collective Dynamics,” p. 441.
7. In fact, here’s a news bulletin: Oracle of  Bacon hasn’t updated its list yet,

but as of  this writing its database shows that Hopper has now surpassed Rod
Steiger as the most connected actor, with an average of  2.711 steps to get to
another actor versus Steiger’s 2.712. Of  course, these numbers continue to
change as new movies are made.

8. Réka Albert and Albert-László Barabási, “Emergence of  Scaling in Ran-
dom Networks,” Science, 286 (15 October 1999): 509.

9. Jennifer Chayes, interview in Redmond, Wash., January 7, 2003.
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