
Empirical Micro

Discrete-Choice Utility

Discrete Choice Model

I Utility of consumer i for product j

uij = U(xj , pj , vi )

I xj is a vector of product characteristics
I pj is the price of the product and
I vi is a vector of consumer characteristics

I Horizontal Model Example: Hotelling with quadratic costs

uij = u − pj − (xj − vi )
2

I xj is the location of the product along the line
I vi is the location of the consumer
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Empirical Micro

Estimation of Random Utility Discrete Choice Models

Random Utility Model (RUM)(McFadden)

I U∗ij usually specified as a sum of two parts

U∗ij (xj , pj , pz , yi ) = Vij(xj , pj , pz , yi ) + εij

I εij i.i.d. across products and consumers; represents consumer
tastes (observed by consumer but not by the researcher)

I What does it mean for tastes to be represented by product
and consumer specific random terms?

I product chosen is random from the researchers point of view
I McFadden won the Nobel Prize for this in 2000
I Assumptions about distribution of the εij ’s determines choice

probabilities

I The probability that consumer i buys product j is

Dij(p1, ...pj , pz , yi ) = Pr ob
{
εi0, ..., εij : U∗ij > U∗ik , for j 6= k

}
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Empirical Micro

Implications of Assumptions on Error Term

Independence of Irrelevant Alternatives (IIA)
I ratio of choice prob (odds ratio) does not depend on the

number of alternatives available

sij
sin′

=
exp(Vij)

exp(Vin′)

I Red bus/blue bus problem: Walk or take red bus
I If consumer walks half the time then siW = siRB = 0.5
I odds ratio walk/RB=1

I Introduce a red bus
I odds ratio between walk/BB is 1

I But buses are perfect substitutes
I new choice prob should be siW = 0.5; siRB = siBB = 0.25
I new odds ratio should be walk/RB=2

I IIA is especially troubling if want to predict penetration of
new products
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Implications of Assumptions on Error Term

Counter-intuitive substitution patterns:

I Not only from the distributional logit assumption

I Due to assumption that the only variance in consumer tastes
comes through the i.i.d. product-specific terms εij

I Since i.i.d., there is no source of correlation in consumer
tastes across similar products

I Changes to allow for more intuitive substitution patterns
I Generalized EV models (GEV, Nested logit)
I Mixtures of logits (K types of logit parameters)
I Product differentiation model (Bresnahan, Stern, Trajtenberg

1997)
I Random Coefficients Model of Demand (Berry, Levinsohn, and

Pakes)
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Models with Correlations Across Consumer Tastes

Nested Logit Model
I Within-group correlation parameter is σg
I Across nests, parameter σ (within (0,1)) describes correlation

between nests

uij = xjβ − αpj + σgvig + εij

I Define the inclusive value of nest g as:

sig =
∑
j∈g

exp

(
uij

1− σ

)
I McFadden (1978) showed nested structure is consistent with

RUM maximization iff the coefficients of the inclusive value lie
within the unit interval

I More complicated forms of cross-product correlation in tastes
do not lead to closed form expressions for shares (like Nested
Logit does)

I need to compute a high dimensional integral and this is tough
I simulation methods help here
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BLP

Inversion Example: Berry Logit

I Simple example of the inversion step: MNL shares

ŝjt(δ) =
exp(δjt)

1 +
J∑

k=1

exp(δkt)

log ŝjt = δjt − log

(
1 +

J∑
k=1

exp(δkt)

)

I but notice for outside good

log ŝ0t = 0− log

(
1 +

J∑
k=1

exp(δkt)

)

I so δjt = log ŝjt − log ŝ0t
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BLP

I This implies

(log Sjt − log S0t) = δjt = Xjtβ − αpjt + ξjt

I where S0t is the share of the outside good

I Can be estimated by OLS
I dependent variable log Sjt − log S0t
I covariates Xjt , pjt , and error term: ξjt

I When there is not a closed form solution for the market share
then solve for ξ structural error and construct moment
condition

I Restrict the model predictions for product j ’s market share to
match the observed market shares

Sobs
t − st(δ, θ) = 0

I then solve for the demand side unobservable

ξjt = δjt(S , θ)− X ′jtβ − αpjt
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Instruments

What are appropriate instruments?

I IV for j should be correlated with pj but not with structural
error ξj

I Usual demand case: cost shifters
I but we have cross-sectional (across products) data, so we

require IV to vary across products within a market

I Example: cars, one natural cost shifter are wages in Michigan

I Here doesn’t work because its the same across all products
I if ran 2SLS with wages in Michigan as IV, first stage regression

of price on wage would yield the same predicted price for all
products
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Instruments

I One commonly used specification is the logit model with
random (normal) coefficients

Uij = Xjβi − αpj + ξj + εij

I The K random coefficients (one for each product
characteristic) are

βik = βk + σkvik

vik ∼ N(0, 1), iid

I it is useful to decompose utility into two parts

µij = ΣkσkXjkvik

δj = Xjβk − αpj + ξj

I So we can rewrite indirect utility as

uij = δj + µij + εij
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GMM (Generalized Method of Moments) Estimation Algorithm

Intuition of the Estimation Algorithm
I The model is one of individual behavior, yet only aggregate

data is observed.
I We can still estimate the parameters that govern the

distribution of individuals
I compute predicted individual behavior and aggregate over

individuals, for a given value of the parameters,
I obtain predicted market shares

I We then choose the values of the parameters that minimize
the distance between these predicted shares and the actual
observed shares

I The metric under which this distance is minimized is not the
straightforward sum of least squares

I rather it is the metric defined by the instrumental variables
and the GMM objective function

I It is this last step that somewhat complicates the estimation
procedure
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Simulation of Market Shares

Calculating the market share via simulation:

I More detail on step 1:

I Condition on vi , yi – this is a logit and get closed form

I Take draws on vi , yi and average over the implied logit shares:

ns∑
i=1

exp(µij + δj)

Σk exp(µik + δk)

I BLP then provide an algorithm (a contraction mapping) that
solves for δ given the parameters and a set of simulation draws
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Estimation of Supply Side

Having discussed some methods of deriving demand, we now turn
to the supply side and a consideration of equilibrium by considering
in turn:

I Estimation of supply side parameters

I Incorporating multi-product firms

I Simultaneously estimating supply and demand

I How to estimate degree of market power or presence of
collusion
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Estimation of Supply Side

Supply Side

I Simplest models of product differentiation involve single
product firms each producing a differentiated product

I We could begin by specifying a demand system for this set of
related products, together with cost functions and an
equilibrium notion.

I The usual assumption is Nash-in-prices.

I Profits of firm j are given by

πj(p) = pjqj(p)− Cj(qj(p))

I The first order condition is

qj + (pj −mcj)
∂q

∂pj
= 0

I We can rewrite as pj = mcj + bj(p)
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Estimation of Supply Side

I where the price-cost markup is

bj(p) =
qj∣∣∣ ∂q∂pj ∣∣∣

I Assume that marginal cost is

mcj = wjη + λqj + ωj

I where wj might consist of X and input prices and q is output
I ωj is a supply shock unobserved to the econometrician

I Combining, the FOC is then

pj = wjη + λqj + bj(p) + ωj

I If demand parameters are known then the markup is known
and can estimate by IV methods (eg 2SLS) where IV are
demand-side variables

I Alternatively mc and demand can be estimated together
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Firm Behavior with Multi-Product Firms

Multi-Product Firms
I Non-cooperative oligopolistic Bertrand competition
I Firm f produces a subset j ∈ Jf of the products: Profits∑

j∈Jf

(pj −mcj)Msj(p,X , ξ; θ)

I where M is market size
I sj is the simulated aggregate market share

I Marginal costs
mcj = w ′j η + ωj

I Any product must have prices that satisfy

sj(p, a) +
∑
r∈Jf

(pr −mcr )
∂sr (p, a)

∂pj
= 0

I Given demand can solve for marginal costs and for ωj
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Firm Behavior with Multi-Product Firms

I In vector form, the J FOC are

s − Ω(p −mc) = 0

I Notice this implies a markup equation p −mc = Ω−1s
I Ω is called the ownership matrix (of dimension JxJ)

I Each element takes on the value of ∂sr (p, a)/∂pj for every
product that the firm owns

I To estimate the FOC think of estimating the equation

mcj = pj − bj(p, x , ξ; θ) = w ′j η + ωj

I Just as in estimating demand, estimates of the parameters η
can be obtained from orthogonality conditions between ω and
appropriate instruments
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Firm Behavior with Multi-Product Firms

Estimation of Supply and Demand Side
I Demand side moment: Restrict the model predictions for

product j ’s market share to match the observed market shares

Sobs
t − st(δ, θ) = 0

I then solve for the demand side unobservable

ξjt = δjt(S , θ)− x ′jβ

I Cost side moment:
I Rearranging price FOC’s yields

mc = p − Ω−1s

I combined with marginal costs yields cost side unobservable

ω = ln(p − Ω−1s)− w ′η
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Nevo, ECMA (2001)

Nevo: Measuring Market Power in the RTE Cereal Industry

I The ready-to-eat (RTE) cereal industry is characterized by
high price-to-cost margins (PCM) and high concentrations

I Antitrust authorities accused firms of collusive pricing behavior
I Nevo tests whether this is the case by estimating the

price-cost margin (PCM) and decomposing it into 3 sources:

1 that due to product differentiation
2 that due to multiproduct form pricing and
3 that due to price collusion

I Overview of methodology:
I use the BLP framework to estimate brand-level demand.
I use demand estimates and different pricing rules to back out

PCMs.
I compare PCMs against crude measures of actual PCM to

separate the different sources of the markup
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Nevo, ECMA (2001)

Model and Data
I Indirect utility is

uijt = αipjt + Xjβi + ξj + ∆ξjt + εijt

I uses brand dummy variables (ξj) to capture the mean
characteristics of RTE cereal

I once brand dummy variables are included in the regression, the
error term is the unobserved city-quarter specific deviation
from the overall mean valuation of the brand :structural error
is the change in ξj over time (denoted ∆ξjt)

I Cannot use BLP Type Instruments
I there is no variation in each brand’s observed characteristics

over time and across cities
I only variation in IVs from characteristics is due to changes in

choice set of available brands
I proposes alternative IV to separate the exogenous variation in

prices (due to differences in mc) and endogenous variation
(due to differences in unobserved valuation)
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Nevo, ECMA (2001)

IVs with brand dummies

I Exploit the panel structure of the data (similar to those used
by Hausman (1996))

I The identifying assumption is that, controlling for brand
specific means and demographics, city-specific valuations are
independent across cities (but are allowed to be correlated
within a city)

I Given this assumption, the prices of the brands in other cities
are valid IV’s.

I prices of brand j in two cities correlated due to the common mc
I but due to the independence assumption will be uncorrelated

with market specific valuation.
I One could potentially use prices in all other cities and all

quarters as instruments

I Independence assumption may not hold (for instance, if there
is a national demand shock related to health of cereal)
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Nevo, ECMA (2001)

Identifying Collusive Behavior
I Recall the markup is given by

p −mc = Ω−1s

I With single product firms the price of each brand is set by a
profit-maximizing firm that considers only the profits from
that brand. In this case the ownership matrix will be diagonal

I With multi-product firms, firms set the prices of all their
products jointly. In this case some off diagonals will be
non-zero

I With collusion, firms act as one firm which owns all products
(ie joint profit-maximization of all the brands). In this case
the ownership matrix will have no zeros

I Nevo estimates parameters under different definitions of the
ownership matrix
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Nevo, ECMA (2001)

Results

I Compares predicted PCM under all three situations to the
observed PCM calculated using accounting data for costs

I Finds that the first two effects explain most of the observed
price-cost margins

I Prices in the industry are consistent with noncollusive pricing
behavior, despite the high price-cost margins.
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