
Empirical Micro

Discrete-Choice Utility

I Vertical Model Example: (Shaked and Sutton, Bresnahan 97)

uij = vixj − pj

I xj is the quality of the product
I vi is the consumer’s taste for quality (ie willingness to pay)

I Rather than model utility directly as a function of price, it
might be preferable to model it as a function of expenditures
on other products and then derive the indirect utility as a
function of price

I There are J alternatives in market, indexed by j = 1, ..., J

I At each purchase occasion, each consumer divides her income
on (at most) one of the alternatives, and on an outside good
z :

max
j ,z

Ui (xj , z)s.t.pj + pzz = yi
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Empirical Micro

Estimation of Random Utility Discrete Choice Models

Random Utility Model (RUM)(McFadden)

I U∗ij usually specified as a sum of two parts

U∗ij (xj , pj , pz , yi ) = Vij(xj , pj , pz , yi ) + εij

I εij i.i.d. across products and consumers; represents consumer
tastes (observed by consumer but not by the researcher)

I What does it mean for tastes to be represented by product
and consumer specific random terms?

I product chosen is random from the researchers point of view
I McFadden won the Nobel Prize for this in 2000
I Assumptions about distribution of the εij ’s determines choice

probabilities

I The probability that consumer i buys product j is

Dij(p1, ...pj , pz , yi ) = Pr ob
{
εi0, ..., εij : U∗ij > U∗ik , for j 6= k

}
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Empirical Micro

Estimation of Random Utility Discrete Choice Models

One Product Example
I Buy good 1 (and not outside good j = 0) if

Vi0 + εi0 ≤ Vi1 + εi1 ⇐⇒ Vi0 − Vi1 ≤ εi1 − εi0

I Conditional Probit: errors distributed N(0, 1)
I where probability good 1 is purchased conditional on

covariates

Pr(εi1 − εi0 ≥ Vi0 − Vi1 = 1− Φ(Vi0 − Vi1)

I Conditional Logit: errors distributed EV (double exponential)

F (ε) = e−e
−ε

I with market share

si1 =
exp(Vi1)

exp(Vi0) + exp(Vi1)
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Empirical Micro

Implications of Assumptions on Error Term

Independence of Irrelevant Alternatives (IIA)
I ratio of choice prob (odds ratio) does not depend on the

number of alternatives available

sij
sin′

=
exp(Vij)

exp(Vin′)

I Red bus/blue bus problem: Walk or take red bus
I If consumer walks half the time then siW = siRB = 0.5
I odds ratio walk/RB=1

I Introduce a red bus
I odds ratio between walk/BB is 1

I But buses are perfect substitutes
I new choice prob should be siW = 0.5; siRB = siBB = 0.25
I new odds ratio should be walk/RB=2

I IIA is especially troubling if want to predict penetration of
new products
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Empirical Micro

Implications of Assumptions on Error Term

Price Elasticities of Demand

I Let Vij = αpj + xjβ

I then own and cross-price elasticity of demand between two
products

∂sij
∂pj

= −αsij(1− sij)

∂sij
∂pk

= αsijsik

I Is it concerning that they depend only on the market shares of
the products?

I Yes, do not depend on the degree to which products have
similar characteristics
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Empirical Micro

Implications of Assumptions on Error Term

Counter-intuitive substitution patterns:

I Not only from the distributional logit assumption

I Due to assumption that the only variance in consumer tastes
comes through the i.i.d. product-specific terms εij

I Since i.i.d., there is no source of correlation in consumer
tastes across similar products

I Changes to allow for more intuitive substitution patterns
I Generalized EV models (GEV, Nested logit)
I Mixtures of logits (K types of logit parameters)
I Product differentiation model (Bresnahan, Stern, Trajtenberg

1997)
I Random Coefficients Model of Demand (Berry, Levinsohn, and

Pakes)
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Empirical Micro

BLP

Berry, Levinsohn, Pakes (BLP) 1995 ECMA

I Method for estimating demand in differentiated product
markets using aggregate data (ie only data on market shares
not individual choices)

I endogenous prices and random coefficients.

I consistent estimation even with imperfect competition

I To motivate framework consider Berry (RAND, 1994)
I There are i = 1, ..., I =∞ agents in t = 1, ...,T markets who

choose among j = 1, ..., J mutually exclusive alternatives

I K observed product characteristics: Xjt = (xj ,1,t , ..., xj ,K ,t)
′

I Product characteristics/choice sets may evolve over markets

I one unobserved product characteristics: ξjt = ξj + ξt + ∆ξjt
I ξj is a permanent component for j ; ξt is a common shock and

∆ξjt is a product/time specific shock for j
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Empirical Micro

BLP

I Consumer i ’s indirect utility is given by

Uijt = X ′jtβ − αpjt + ξjt︸ ︷︷ ︸+εijt

≡ δjt

I Derive market-level (aggregate) share expression from
individual model of discrete-choice

I εijt are iid EV so the probability i chooses j is given by

sijt =
exp(δjt)

1 +
∑
k

exp(δkt)

I Aggregate market shares for product j are (weighted) sum of
individual choice probabilities (M is the market size)

sjt =
1

M
[Msijt ] =

exp(δjt)

1 +
∑
k

exp(δkt)
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Empirical Micro

BLP

I construct the moment condition

1

J

J∑
j=1

E [(δjt(S)− Xjtβ + αpjt)Z ] ≡ Qjt(α, β)

I Can estimate α and β by minimizing

min
α,β

Qjt(α, β)2

I Why does this work?

I As J gets large, by the law of large numbers Qjt(α, β)
converges to E [(δjt − Xjtβ + αpjt)Z ]

I If there exist appropriate instruments Z then at the true
values of the parameters this expectation is equal to zero

I Hence, the (α, β) that minimizes Qjt(α, β)2 should be close to
the true parameter values
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Empirical Micro

Instruments

What are appropriate instruments?

I IV for j should be correlated with pj but not with structural
error ξj

I Usual demand case: cost shifters
I but we have cross-sectional (across products) data, so we

require IV to vary across products within a market

I Example: cars, one natural cost shifter are wages in Michigan

I Here doesn’t work because its the same across all products
I if ran 2SLS with wages in Michigan as IV, first stage regression

of price on wage would yield the same predicted price for all
products
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Empirical Micro

Instruments

Random Coefficient Logit

I A well-known solution to problems with logit is to interact
product and consumer characteristics (second contribution of
BLP)

I ε is EV, like the logit, but βi , αi are consumer-specific random
coefficients from a parametric distribution

uij = Xjβi − αipj + ξj + εij

I Variance is added to the term α or β so substitution patterns
can become more reasonable

I Assume that βi and αi are distributed across consumers
according to some parametric distribution

I The own- and cross-derivatives are more flexible. Why?
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Empirical Micro

GMM (Generalized Method of Moments) Estimation Algorithm

Intuition of the Estimation Algorithm
I The model is one of individual behavior, yet only aggregate

data is observed.
I We can still estimate the parameters that govern the

distribution of individuals
I compute predicted individual behavior and aggregate over

individuals, for a given value of the parameters,
I obtain predicted market shares

I We then choose the values of the parameters that minimize
the distance between these predicted shares and the actual
observed shares

I The metric under which this distance is minimized is not the
straightforward sum of least squares

I rather it is the metric defined by the instrumental variables
and the GMM objective function

I It is this last step that somewhat complicates the estimation
procedure
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Empirical Micro

GMM (Generalized Method of Moments) Estimation Algorithm

Overview GMM Estimation Algorithm

I Guess a parameter vector θ

I Solve for δ and therefore ξ

I Interact ξ and instruments Z these are the moment
conditions Q(θ)

I Calculate the objective function f (θ)= Q ′AQ for some

positive definite A how far is Q(θ) from zero?

I Guess a new parameter and try to minimize f

I Variance of θ̂ includes variance in data across products and
simulation error as well as any sampling variance in the
observed market shares

I Can simplify the algorithm since δ in linear in some
parameters – see NEVO (JEMS 2000) for details
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Empirical Micro

Simulation of Market Shares

Steps for Simulation

I There are essentially four steps (plus an initial step) to follow
in computing the estimates:

0 prepare the data including draws from the distribution of v
and D

1 for a given value of θ and δ compute the market shares

2 for a given θ, compute the vector δ that equates the market
shares computed in Step 1 to the observed shares;

3 for a given θ, compute the structural error term (as a function
of the mean valuation computed in Step 2), interact it with
the instruments, and compute the value of the objective
function;

4 search for the value of θ that minimizes the objective function
computed in Step 3.
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Empirical Micro

Estimation of Supply Side

Supply Side

I Simplest models of product differentiation involve single
product firms each producing a differentiated product

I We could begin by specifying a demand system for this set of
related products, together with cost functions and an
equilibrium notion.

I The usual assumption is Nash-in-prices.

I Profits of firm j are given by

πj(p) = pjqj(p)− Cj(qj(p))

I The first order condition is

qj + (pj −mcj)
∂q

∂pj
= 0

I We can rewrite as pj = mcj + bj(p)
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Empirical Micro

Estimation of Supply Side

I where the price-cost markup is

bj(p) =
qj∣∣∣ ∂q∂pj ∣∣∣

I Assume that marginal cost is

mcj = wjη + λqj + ωj

I where wj might consist of X and input prices and q is output
I ωj is a supply shock unobserved to the econometrician

I Combining, the FOC is then

pj = wjη + λqj + bj(p) + ωj

I If demand parameters are known then the markup is known
and can estimate by IV methods (eg 2SLS) where IV are
demand-side variables

I Alternatively mc and demand can be estimated together
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Empirical Micro

Firm Behavior with Multi-Product Firms

Multi-Product Firms
I Non-cooperative oligopolistic Bertrand competition
I Firm f produces a subset j ∈ Jf of the products: Profits∑

j∈Jf

(pj −mcj)Msj(p,X , ξ; θ)

I where M is market size
I sj is the simulated aggregate market share

I Marginal costs
mcj = w ′j η + ωj

I Any product must have prices that satisfy

sj(p, a) +
∑
r∈Jf

(pr −mcr )
∂sr (p, a)

∂pj
= 0

I Given demand can solve for marginal costs and for ωj
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Empirical Micro

Firm Behavior with Multi-Product Firms

I In vector form, the J FOC are

s − Ω(p −mc) = 0

I Notice this implies a markup equation p −mc = Ω−1s
I Ω is called the ownership matrix (of dimension JxJ)

I Each element takes on the value of ∂sr (p, a)/∂pj for every
product that the firm owns

I To estimate the FOC think of estimating the equation

mcj = pj − bj(p, x , ξ; θ) = w ′j η + ωj

I Just as in estimating demand, estimates of the parameters η
can be obtained from orthogonality conditions between ω and
appropriate instruments
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Empirical Micro

Nevo, ECMA (2001)

Nevo: Measuring Market Power in the RTE Cereal Industry

I The ready-to-eat (RTE) cereal industry is characterized by
high price-to-cost margins (PCM) and high concentrations

I Antitrust authorities accused firms of collusive pricing behavior
I Nevo tests whether this is the case by estimating the

price-cost margin (PCM) and decomposing it into 3 sources:

1 that due to product differentiation
2 that due to multiproduct form pricing and
3 that due to price collusion

I Overview of methodology:
I use the BLP framework to estimate brand-level demand.
I use demand estimates and different pricing rules to back out

PCMs.
I compare PCMs against crude measures of actual PCM to

separate the different sources of the markup
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Empirical Micro

Nevo, ECMA (2001)

Model and Data
I Indirect utility is

uijt = αipjt + Xjβi + ξj + ∆ξjt + εijt

I uses brand dummy variables (ξj) to capture the mean
characteristics of RTE cereal

I once brand dummy variables are included in the regression, the
error term is the unobserved city-quarter specific deviation
from the overall mean valuation of the brand :structural error
is the change in ξj over time (denoted ∆ξjt)

I Cannot use BLP Type Instruments
I there is no variation in each brand’s observed characteristics

over time and across cities
I only variation in IVs from characteristics is due to changes in

choice set of available brands
I proposes alternative IV to separate the exogenous variation in

prices (due to differences in mc) and endogenous variation
(due to differences in unobserved valuation)
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Empirical Micro

Nevo, ECMA (2001)

IVs with brand dummies

I Exploit the panel structure of the data (similar to those used
by Hausman (1996))

I The identifying assumption is that, controlling for brand
specific means and demographics, city-specific valuations are
independent across cities (but are allowed to be correlated
within a city)

I Given this assumption, the prices of the brands in other cities
are valid IV’s.

I prices of brand j in two cities correlated due to the common mc
I but due to the independence assumption will be uncorrelated

with market specific valuation.
I One could potentially use prices in all other cities and all

quarters as instruments

I Independence assumption may not hold (for instance, if there
is a national demand shock related to health of cereal)
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Empirical Micro

Nevo, ECMA (2001)

Identifying Collusive Behavior
I Recall the markup is given by

p −mc = Ω−1s

I With single product firms the price of each brand is set by a
profit-maximizing firm that considers only the profits from
that brand. In this case the ownership matrix will be diagonal

I With multi-product firms, firms set the prices of all their
products jointly. In this case some off diagonals will be
non-zero

I With collusion, firms act as one firm which owns all products
(ie joint profit-maximization of all the brands). In this case
the ownership matrix will have no zeros

I Nevo estimates parameters under different definitions of the
ownership matrix
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