Kinetics

The rate of a chemical reaction is the change in concentration of a substance in a unit time. Substance monitored by decrease in reactant or increase in product- titration, pH, colorimetry The rate of chemical reaction depends on concentration and temperature of reagents.

Rate $\alpha[A]^m[B]^n$

Where [] refers to the concentration of a species in the SI units of mol dm⁻³

M and n values are determined experimentally and proportional constant can be replaced by k, rate constant.

Rate= $k[A]^m[B]^n$

M and n values are usually integers and are called orders of reaction with respect to reactants A and B.

The overall order of a reaction is the sum of the powers of the concentration terms in the rate equation.

Zero- order reactions

- Rate= k[A]^x
- When x=0 then rate=k so rate does not depend on the concentration of [A] present
- Reactions between gases are sometimes zero-order often indicating that the reaction then depends on the frequency with which the non-absorbed molecules collide with the noide of the vessel and not the concentration of this gas species
- With enzyme catalysts above a certain substrate consultation, all active sites are occupied and the rate becomes zero- order in the set time.

First- order reactions

- Rate= k[A]¹
- Bate is first order in respect to A so (here conc¹¹ A doubles, the rate will double
 K=rate/[A] and measured in 1⁻¹ as (mor dm⁻³ s⁻³)/(mol dm⁻³ s⁻³)

Second- order reactions

- Rate= k[A]² -Second order with respect to A
- Rate= k[A][B] -Second order with respect to A and B
- Measured in mol⁻¹dm³s⁻¹
- K= (rate)/[A][B] so cancels

Higher-order Reactions

- Rate= $k[A]^m[B]^n$
- M + n= order of reaction

Order of Reaction m+n	Rate equation Rate= k[rate] ^(m+n)	Units of Rate Constant
0	Rate=k*concentation ⁰	mol dm ⁻³ s ⁻¹
1	Rate=k*concentation ¹	s ⁻¹
2	Rate=k*concentation ²	mol ⁻¹ dm ³ s ⁻¹
3	Rate=k*concentation ³	mol ⁻² dm ⁶ s ⁻¹
4	Rate=k*concentation ⁴	mol ⁻³ dm ⁹ s ⁻¹
5	Rate=k*concentation ⁵	mol ⁻⁴ dm ¹² s ⁻¹