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absolute significance of relative magnitude only if it has the power-law
form

Q = AaBbC c... (2.5)

where A, B, C, etc. are numerical values of base quantities and the
coefficient  and exponents a, b, c, etc. are real numbers whose values
distinguish one type of derived quantity from another. All monomial
derived quantities have this power-law form; no other form represents a
physical quantity.

A derived quantity of the first kind is defined in terms of a numerical
value, which depends on the choice of base units. A derived quantity does
not necessarily represent something tangible in the same sense as a base
quantity, although it may. The square root of time, for example, is a
derived quantity because it has the required power-law form, but we
cannot point to any physical thing that “is” the square root of time.

To avoid talking of "units" for quantities that may have no physical
representation, but whose numerical values nevertheless depend on the
choice of base units, we introduce the concept of dimension. Each type of
base quantity has by definition its own dimension. If A is the numerical
value of a length, we say it “has the dimension of length”, and write this as
[A]=L where the square brackets imply “the dimension of” and L
symbolizes the concept of length. By this we mean simply that if the
length unit size is increased by a factor n, the numerical value A will
increase by a factor n-1.

The dimension of a derived quantity conveys the same information in
generalized form, for derived as well as base quantities. Consider a
quantity defined by the formula

Q = L1
l1 L2

l 2 ...M1
m1 M2

m2 ...t1
1 t2

2 ... (2.6)

where the Li's are numerical values of certain lengths, Mi's of certain
masses, and ti's of certain times, and  and all exponents are real numbers.
If the length unit is changed by a factor nL , the mass unit by a factor nm ,
and the time unit by a factor nt , it follows from equations (2.4) and (2.6)
that the value of Q changes to

′ Q = n−1Q (2.7a)
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This same transformation could also have been obtained by arguing that
equation (2.12), being an expression of a general physical law, must,
according to Bridgman’s principle of absolute significance of relative
magnitude, be dimensionally homogeneous, and therefore should properly
have been written

x = ct2 (c = 4.91ms−2 )   (2.14)

This form makes clear that the coefficient c is a physical quantity rather
than a numerical coefficient. The units of c indicate its dimension and
show that a change of the length unit from meters to feet, with the time
unit remaining invariant, changes c by the factor 3.28, the inverse of the
factor by which the length unit is changed. This gives c=16.1 ft s-2, as in
equation (2.13).

Equation (2.14) is the correct way of representing the data of equation
(2.11). It is dimensionally homogeneous, and makes the transformation to
different base units straightforward.

Every correct physical equation—that is, every equation that expresses
a physically significant relationship between numerical values of physical
quantities—must be dimensionally homogeneous. A fitting formula
derived from correct empirical data may at first sight appear dimensionally
non-homogeneous because it is intended for particular base units. Such
formulas can always be rewritten in general, homogeneous form by the
following procedure (Bridgman, 1931):

(1) Replace all the numerical coefficients in the equation with unknown
dimensional constants.

(2) Determine the dimensions of these constants by requiring that the new
equation be dimensionally homogeneous.

(3) Determine the numerical values of the constants by matching them
with those in the original equation when the units are the same.

This is of course how equation (2.14) was derived from equation
(2.12).

Another example serves to reinforce this point. Suppose it is found that
the pressure distribution in the earth's atmosphere over much of the United
States can be represented (approximately) by the formula
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p = 1.01x105 e−0.00012z (2.15)

where p is the pressure in Nm-2 and z is the altitude in meters. This
expression applies only with the cited units. The correct, dimensionally
homogeneous form of this equation is

p = ae−bz ( a = 1.01×105 Nm−2 , b = 0.00012m −1) (2.16)

where a and b are physical quantities. In this form the equation is valid
independent of the chosen base units. The dimensions of a and b indicate
how these quantities change when units are changed.

The two quantities a and b in equation (2.16) are physical constants in
the sense that their values are fixed once the system of units is chosen. In
this case the constants characterize a particular environmentthe pressure
distribution in the earth’s atmosphere over the US. Similarly, the
acceleration of gravity g in equation (2.11) is a physical constant that
characterizes the (local!) gravitational force field at the earth’s surface.

The basic laws of physics also contain a number of universal physical
constants whose magnitudes are the same in all problems once the system
of units is chosen: the speed of light in vacuum c, the universal
gravitational constant G, Planck’s constant h, Boltzmann’s constant kB,
and many others.

2.6  Derived quantities of the second kind

The classification of quantities as base or derived is not unique. There
exist general laws that bind different kinds of quantities together in certain
relationships, and these laws can be used to transform base quantities into
derived ones. Such transformations are useful because they reduce the
number of units that must be chosen arbitrarily, and simplify the forms of
physical laws.

Area, for example, may be taken as a base quantity with its own
comparison and addition operations, and measured in terms of an
arbitrarily chosen (base) unit: a certain postage stamp, say, to use an
absurd example. The floor area of a room may be measured by covering
the floor with copies of this postage stamp and parts thereof, and counting
the number of whole stamps required. If we adopt this practice we will
eventually find that, regardless of the unit we have chosen for measuring
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the base units taken are the foot, the second, the pound-mass (lbm), and
the pound-force (lbf), and the constant in Newton's law has the value
c=1/32.2 lbf s2 lbm-1 ft-1.

Table 2.2 illustrates the fact that, while an actual physical quantity like
force is the same regardless of the (arbitrary) choice of the system of units,
its dimension depends on that choice. What is more, depending on how
derived quantities are defined, a given physical law may contain a
dimensional physical constant the value of which must be specified (as in
F=cma), or it may contain no physical constant (as in F=ma).

An interesting point to note is that only a few of the available universal
laws are usually "used up" to make base quantities into derived ones of the
second kind. There are many laws left with universal dimensional physical
constants that could in principle be set equal to unity: the gravitational
constant G, Planck's constant h, Boltzmann's constant kB, the speed of light
in vacuum c, etc. This leaves us with some interesting possibilities. For
example, it is possible to define systems of units that have no base
quantities at all (see Bridgman, 1931). In such systems all units of
measurement are related to some of the universal constants that describe
our universe. In effect, there exist in the universe "natural" units for all
base quantities, based on universal constants such as the speed of light, the
quantum of energy, etc. Unfortunately, the choice of such “natural”
systems of units turns out to be far from unique, which renders futile any
attempt to endow any one of them with unique significance.

2.8 Recapitulation

1. A base quantity  is a property that is defined in physical terms by
two operations: a comparison operation, and an addition operation. The
comparison operation is a physical procedure for establishing whether two
samples of the quantity are equal or unequal; the addition operation
defines what is meant by the sum of two samples of that property.

2. Base quantities are properties for which the following concepts are
defined in terms of physical operations: equality, addition, subtraction,
multiplication by a pure number, and division by a pure number. Not
defined in terms of physical operations are: product, ratio, power, and
logarithmic, exponential, trigonometric and other special functions of
physical quantities.
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Step 3: Dimensionless  variables

We now define dimensionless forms of the n-k remaining independent
variables by dividing each one with the product of powers of Q1...Qk

which has the same dimension,

Π i =
Qk +i

Q1
N(k +i )1 Q2

N(k +i ) 2...Qk
N( k+i ) k

, (3.5)

where i=1, 2,..., n-k, and a dimensionless form of the dependent variable
Q0,

Π0 =
Q0

Q1
N01Q2

N02 ...Qk
N 0k

. (3.6)

Step 4: The end game and Buckingham’s -theorem

An alternative form of equation (3.1) is

                     = f(Q
1
,Q

2
, ...., Q

k
; 1, 2 , ..., n-k)      (3.7)

in which all quantities are dimensionless except Q1...Qk. The values of the
dimensionless quantities are independent of the sizes of the base units. The
values of Q1...Qk, on the other hand, do depend on base unit size. They
cannot be put into dimensionless form since they are (by definition)
dimensionally independent of each other. From the principle that any
physically meaningful equation must be dimensionally homogeneous, that
is, valid independent of the sizes of the base units, it follows that Q1...Qk

must in fact be absent from equation (3.7),  that is,

                     = f( 1, 2 , ..., n-k)   .  (3.8)

This equation is the final result of the dimensional analysis, and
contains
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 Buckingham's -theorem:

When a complete relationship between dimensional physical
quantities is expressed in dimensionless form, the number of
independent quantities that appear in it is reduced from the original
n to n-k, where k is the maximum number of the original n that are
dimensionally independent.

The theorem derives its name from Buckingham's use of the symbol  for
the dimensionless variables in his original 1914 paper. The π-theorem tells
us that, because all complete physical equations must be dimensionally
homogeneous, a restatement of any such equation in an appropriate
dimensionless form will reduce the number of independent quantities in
the problem by k. This can simplify the problem enormously, as will be
evident from the example that follows.

The π−theorem itself merely tells us the number of dimensionless
quantities that affect the value of a particular dimensionless dependent
variable. It does not tell us the forms of the dimensionless variables. That
has to be discovered in the third and fourth steps described above. Nor
does the π-theorem, or for that matter dimensional analysis as such, say
anything about the form of the functional relationship expressed by
equation (3.7). That form has to be discovered by experimentation or by
solving the problem theoretically.

3.2  An example: Deformation of an elastic ball striking a wall

Suppose we wish to investigate the deformation that occurs in elastic balls
when they impact on a wall. We might be interested, for example, in
finding out what determines the diameter d of the circular imprint left on
the wall after a freshly dyed ball has rebounded from it (figure 3.1).

Step 1: The independent variables

The first step is to identify a complete set of independent quantities that
determine the imprint radius d. We begin by specifying the problem more
clearly. We agree to restrict our attention to (initially) spherical,
homogeneous balls made of perfectly elastic material, to impacts at
perpendicular to the wall, and to walls that are perfectly smooth and flat
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The result is independent of how one chooses a dimensionally independent
subset

Suppose we had chosen the dimensionally independent subset V, E, and 
instead of V, D and . Non-dimensionalizing d and D with combinations
of V, E and , we might have obtained the result

d

( V 2 / E)1/3 = F
D

(mV 2 / E)1 / 3,
 
 
  

 
(3.18)

This can, however, be rewritten as

d

D
=

mV2

ED3

 
 
  

 

1 / 3

F
ED3

mV2

 
 
  

 

1 / 3

,
 

 
 

 

 
  = f

ED3

mV2 ,
 
 
  

 
(3.19)

where F and f are different functions of their arguments. Equation (3.19) is
of course identical to equation (3.13).

The result is independent of the type of system of units

The choice of system of units may affect the dimensions of physical
quantities as well as the values of the physical constants that appear in the
underlying physical laws. What effect, if any, does this have on
dimensional analysis? Reason dictates there should be no effect on the
“bottom line”, since the observer (the analyst) is free to choose or make up
whatever system of units he wants, and his arbitrary choice should not
affect the laws of physics.

Consider our example of the dyed ball, but viewed in terms of a
system of units like the British Engineering System (type3 in table 2.2),
where mass, length, time and  force are taken as base units. In such a
system Newton’s law reads F= cma, where c is a physical constant with
dimension Ft2m-1 L -1. This affects the very first step of the analysis. Since
the impact process is controlled by Newton’s law, which now contains the
constant c, the value of which must be specified, we now have

d = d(V ,D, E ,m, ,c). (3.20)
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density are essentially the same in all the applications that interest us. The
similarity law equation (4.1) cannot be simplified.

Simplification occurs only when some of the fixed quantities are
dimensionally dependent on the rest.
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