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a,xa,=a, (1.29)
Example 1. 5:
Verify Lagrange's identity, which states that if A and B are two arbitrary vectors,
then |A x B|? = A’B? — (A.B)?
Solution:
From the definition of the cross product of two vectors, we have
|A X B|> = A?B?sin?0

= A’B?(1 — cos?6)
— A2B2 — A2B2 cos2 6 = A2B2 — (A. B)?

Just as multiplication of two vectors gives a scalar or vector result, multiplication of
three vectors A, B, and C gives a scalar or vector result depending on how the vectors are
multiplied. Thus we have scalar or vector triple product.

1.1.6.3 Scalar Triple Product

Given three vectors A, B, and C, we define the scalar triple product as,

A.(BXC)=B.(CxA)=C.(AxXB) \)\4

This is obtained using a cycle permutation. If A = % \gB (B, By, B;) and
eplped having A, B, and C as

C = (Cy, Cy,C;) then A.(BXC) is the VOlLﬁ
edges and is easily obtamed{y fi m terminant ‘ )—6 matrix formed by A, B,

and C; that is, O
, /L?)
prev™ pedl
A.(BxC) = [By (1.31)
Cy cy CZ

Since the result of this vector multiplication is scalar these two equations are called

the scalar triple product.

1.1.6.4 Vector Triple Product

For vectors A, B, and C, we define the vector triple product as
A X (BxC)=B(A.C)—C(A.B) (1.32)
This is obtained using the “bac-cab” rule.

Example 1. 6:

Given vectors A = 3a, + 4a, +a, and B = 2a, — 5a,, find the angle between A
and B.

Solution:
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(Ay, Ay, Ay)or Ayay +Aja, + A,a, (1.33)

Where a,, a,, a, are unit vectors along the x,y, and z directions.

X

Figure 1. 7: A point in Cartesian coordinates is defined by the intersection of the three planes: x = constant,
y = constant, z = constant. The three unit vectors are normal to each of the three surfaces.

The ranges of the variables are:

1.2.3 CIRCULAR CYLINDW &QINA

The urcul n&a‘ Qdmate \% @ convenlent whenever we are
dealing é‘d& avin gcylmd :&(-r

A point P in cyhndr? coordinates is represented as (p, ¢, z) and is as shown in
Figure 1.8. Observe Figure 1.8 closely and note how we define each space variable: p is the
radius of the cylinder passing through P or the radial distance from the z-axis: ¢, called the
azimuthal angle, is measured from the x-axis in the xy-plane; and z is the same as in the
Cartesian system. The ranges of the variables are:

0<p<sw
0<¢<2m (1.35)

—00<z< 40

A vector A in cylindrical coordinates can be written as

(A, Ap Az) or Apa, + Agay + Aja, (1. 36)
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(called the colatitudes) is the angle between the z-axis and the position vector of P; and ¢ is
measured from the x-axis (the same azimuthal angle in cylindrical coordinates). According to
these definitions, the ranges of the variables are

0<f0<m (1.48)

0<¢<2m

A vector A in spherical coordinates can be written as

(Ar' AG’A¢) or Aya, + A9a9 + A¢a¢ (1. 49)

(a) (b)
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Calculate the work AW required to move the cart along the circular path from point
A to point B if the force field is

F = 3xya, + 4xa,

N

\
: 1L,

0 A 5

Figure 1. 21: For this example.
Solution:

The integral can be performed in Cartesian coordinates or in cylindrical coordinates.
In Cartesian coordinates, we write

= (Bxydx + 4xdy)

F.dl = (3xya, + 4xa,).(dxa, +dya O u\k
a‘e ©
The equation of a circle is x2 + y? & te

'e\N J L\ JT dﬁﬁﬁ&—? y

—|? x2)|9 + |4( 16—y2+8sin‘1(%))|

= —64 + 1671

4

pre

0

In cylindrical coordinates, we write
F.dl = (3xya, + 4xa,).(dra, +rdp a, + dza,)

Since the integral is to be performed along the indicated path where only the angle
@ is changing, we have dr = Oanddz = 0.Alsor = 4. Therefore

F.dl = (3xya, + 4xa,).(4dpa,)
aya, = —sing
aya, = cos@

The integral becomes
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3 1

1
x

fF.dlzf (x? = 1dx = [——x
0 3

3 0

2

3

For segment4,x=1, = a, — za, —y*a,,dl =dya, +dza,,so

fF. dl = f(—z dy — y?dz)

4
Buton 4, z = y; thatis, dz = dy. Hence,

0

0 2 3 5
del:f(—y—yz)dyz _y__y_ = —
1 2 3 6
3 1
By putting all these together, we obtain
del— 1+0 2+5— !
3 3'6 6
L
Example 1. 27:
Calculate the circulation of A = p cos ¢ a, + z sin ¢ a, around the edge the

wedge definedby 0 < p < 2,0 <t < 60° z = 0andshown in Figurg<.
Sa\e ‘ég .
fo®

Figure 1. 23: For this example.
Solution :
Answer: 1
Example 1. 28:

Find the volume of a cylinder that has a radius a and a length L.
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Figure 1. 24: For this example.
Solution:

The volume of a cylinder is calculated to be

z=L r@=2m ,r=3
Av—fdv—f f f rdr de dz = ma®L
r=0

1.3.4 DEL OPERATOR

The del operator, written V, is the vector differential operator. In Cartesian

6 coY
—a
0z ? \e .

This vector differential operator, otN as the adient operator, is not a
vector in itself, but when it era calar unct|on 6Ie a vector ensues. The
operator is usefyl i |n %

P ? @e\! \nent of a %@@h as VV

2. The divergence of a vector A, written as V. A.

coordinates,

v=ZLa +2a,+
T ox ayay

3. The curl of a vector A, written as V X A.
4. The Laplacian of a scalar V, written as V2 V.

Each of these will be denned in detail in the subsequent sections. Before we do that,
it is appropriate to obtain expressions for the del operator V in cylindrical and spherical
coordinates.

0 0 0
Cartesian coordinates V= aax + @ay + &az (1.82)
Cylindrical dinat \% 0 +16 +6 (1.83)
indrical coordinates =— - — .
Y ap e p g A6 T 5,22
Spherical dinat v 9 +16 + 1 g (1. 84)
erical coordinates =— -—— — .
P or T 730 Ty singog ®
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(a)

[b¥ (ch

Figure 1. 25: lllustration of the divergence of a vector field at P; (a) positive divergence, (b) negative
divergence, (c) zero divergence.

The divergence of A at point P is given by:

Cartesian
coordinates V.A= Ox + dy + 9z (1.92)
Cylindrical 10 1044 04,
coordinates V.A= ;%(PAp) + EW (1.93)
Spherical _ i 1 6A¢
r2

0 1
Y2
coordinates or A+ ne T sinf 06 (Ae sin8) + r sin@ an \“)K

From the definition of the divergence of A, it is not dlfﬂé.\texp

ke
This is c\lewn:&gen(cgfl}re o@ V\Q‘snoégthe Gauss-Ostrogradsky

esgeNY T 0ag®

The divergence theorem states that the total outward flux of a vector field A through
the closed surface S is the same as the volume integral of the divergence of A.

Volume v —_|
A Closed Surface §

e

.

Figure 1. 26: Volume v enclosed by surface S.

Example 1. 31:

Determine the divergence of these vector fields:
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a, pag a,

Cylindrical 1 i i i
coordinates VXA= plop 099 oz (1.97)
Ap pAd) Az
|ar Tag 7T sinfag|
Spherical _ 1 d d 0
coordinates VxA= 2 sinf lor 90 26 (1.98)

Ay 1A 1 Sinb Ay

The physical significance of the curl of a vector field is evident; the curl provides the
maximum value of the circulation of the field per unit area (or circulation density) and
indicates the direction along which this maximum value occurs. The curl of a vector field A at
a point P may be regarded as a measure of the circulation or how much the field curls
around P. For example, Figure 1.26(a) shows that the curl of a vector field around P is
directed out of the page. Figure 1.26(b) shows a vector field with zero curl.

ep } .
N~ \b CO \)\(
(a) w teﬁa%
Figure 1. 27: lllustr, ?‘G ) cdrl athomts* 6 e; (b) curl at P is zero.

From th‘e‘l\t f"the curl of 5&3 orQ can obtain Stokes' theorem that
rel@s(@gl ntegral@a@ ra

5§Ad1 f(VxA) ds
L

We can write

dS

Clased Path L

e

Surface §

dl

Figure 1. 28: Determining the sense of dl and dS involved in Stokes's theorem.
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