- Vacuole-storage organelle, in all eukaryotes, though most prevalent in plant cells . as a central vacuole and stores water; contractile vacuole squeexes out water to propel cell or modify tonicity
- Endosymbiotic Theory 0
 - Eukaryotic cell formed when one cell engulfed another
 - Mitochondria, chloroplasts, and nucleus can act like their own cells
 - Contain their own DNA
 - Can make proteins •
 - Have double membranes
 - Have ribosomes
 - **Divide independently**
- o Cell size
 - Surface area: volume ratio .
 - Want a high ratio
 - Want more surface area, and less volume (demand)
- 6) Chapter 5, Part 1
 - o Membrane structure and components
 - Fluid mosaic models: can move and is made of many parts **O UK** Made of amphipathic phospholinids arranged in **N** •
 - Made of amphipathic phospholipids arranged in the velocity .
 - Constant lateral movement
 - Hydrophilic heads and the phobic tails
 - Integral and gerip in r 1 membrane proteins
 - Glycolicies and glycoproteins- acbo v in tes attached for cell-cell recognition

Neorbrane proteins:

- Channels and corriers
- Stationary enzymes
- Receptors
- Recognition/communication
- Junctions
- Maintenance of cell exterior (protein matrix) •
- Rules of Membrane Permeability 0
 - . Selective permeability
 - Main function of membrane is to decide what can and cannot enter the cell
 - Nonpolar dissolve freely .
 - Ions and polar molecules are slowed or stopped and will need a transporter (charged atoms, glucose, water)
- Passive transport 0
 - Simple diffusion-occurs for molecules that easily cross the membrane on their . own
 - Osmosis-diffusion of water
 - Tonicity-ability of a surrounding solution to cause a cell to gain or lose • water

- Move signal through the cell
 - Sequence of phosphorylation
 - Done by protein called kinases
 - Add a phosphate
- Phosphorylation cascade
- Response 0
 - Cellular response-changing enzymatic activity
 - Nuclear response-involves transcription factors and change in production in the cell
- **Reception of Cell signals**
 - G protein-coupled receptors (extracellular) •
 - Receptor binds to ligand, shape change leads to binding of G protein, G protein is then turned on by joining with GTP, active G protein goes to a specific enzyme and activates it to lead to a cellular response, system is reset
 - Receptor Tyrosine Kinases-RTKs (extracellular)
 - Set off a lot of signal transduction pathways at once.
 - Dimerization of receptors causes the kinase portion of the 0 molecule to add phosphates (from CP), to its tyrosine amino acids
 - Ligand-Gated Ion Channels (
 - Channel with the loss of gate will open when its bound by a 0 provident ligand, allowing ion influe into the cell

Previewtrate ular receptor O Small cophobic ligands can act as messengers that freely cross membrane, so some receptors can be found in the cytoplasm or even nucleus

- Transduction of Signals (Signal transduction pathways)
 - Signal transduction pathways are like falling dominoes
 - Interaction of mostly proteins in sequences acting like "relay 0 molecules"
 - Phosphorylation
 - O Addition of a phosphate causes a change in shape of a protein
 - o Generally activates a protein
 - O Done by protein kinase-enzymes that transfer phosphate groups from ATP to a protein
 - Dephosphorylation
 - O Taking away of a phosphate
 - o Generally deactivates a protein
 - o Done by protein phosphatase-enzymes that remove phosphate groups, forms ATP, can shut off a communication signal
 - Cell communication relies upon a balance of kinases and phosphatases
 - Second Messenger systems

- o Only about 34% of the potential chemical energy in glucose is transferred to heat, and the rest is lost from the system as heat
- o Carbohydrates are best because they start at the beginning of the process and can therefore generate more ATP
- Overall payoffs: 34 from ETC, 2 from glycolysis, 2 from Krebs Cycle, none from fermentation (just estimates)
- O Regulation of processes
 - Basic supply and demand
 - Feedback inhibition (negative feedback control) from citrate and ATP
 - Will send products back and stop the process
 - Positive feedback from AMP (indicates lack of ATP) and will activate enzymes

11) Chapter 8

- Heterotrophs vs Autotrophs
 - O Heterotrophs-consumers; don't make their own "food"
 - Autotrophs-producers; plants, algae, and cyanobacteria that can generate their own "food"
- Chloroplast structure and function and Basics of light function
 - o Chloroplasts
 - Present in all green parts of the plant
- le.co.uk Found in mesophyll cells-interior tissue of the leaf •
 - Double-membrane envelope surrounding a personal did stroma .
 - Thvlakoids-membranous sacs (the v is of membranes) enclosed in the chloroplast
 - Stacks called m
 - the thylakoid membranes rophyll (green pigme t)
 - 0 Light
 - rovide energy tosynthesis
 - Chlorophyll a, Chlorophyll b, and carotenoids help light absorption
 - Chlorophylls absorb all light other than yellow/green, which it reflects
- Photosynthesis
 - Production of carbohydrates from sunlight and CO2 0
 - The Light Reactions
 - Production of NADPH through electron excitation
 - Production of ATP through chemiosmosis/photophosphorylation •
 - O Pumping of H+ across protein chain between photosystems
 - Photophosphorylation=phosphorylation powered by light
 - Splitting of H2O to harvest electrons-production of O2
 - Converting solar energy into chemical energy in the form of ATP and NADPH
 - Does not involve making carbohydrates or using CO2
 - Chlorophylls do the majority of light absorption, while carotenoids are involved in photoprotection-absorption of excessive light energy
 - Photosystems consist of Reaction center and light-harvesting complex
 - 0 PSII-comes first, contains P680
 - PSI-comes second, contains P700