
TUTORIALS POINT

Simply Easy Learning

ABOUT THE TUTORIAL

Java Tutorial
Java is a high-level programming language originally developed by Sun Microsystems and released in

1995. Java runs on a variety of platforms, such as Windows, Mac OS, and the various versions of UNIX.
This tutorial gives a complete understanding ofJava.

This reference will take you through simple and practical approach while learning Java Programming
language.

Audience
This reference has been prepared for the beginners to help them understand the basic to advanced
concepts related to Java Programming language.

Prerequisites
Before you start doing practice with various types of examples given in this reference, I'm making an
assumption that you are already aware about what is a computer program and what is a computer
programming language?

Copyright & Disclaimer Notice

All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from

tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at webmaster@tutorialspoint.com

Preview from Notesale.co.uk

Page 3 of 317

TUTORIALS POINT

Simply Easy Learning

Example: ... 44

Access Control and Inheritance: .. 44

2. Non Access Modifiers .. 44

Access Control Modifiers: .. 45

Non Access Modifiers: ... 45

Access Control Modifiers: .. 45

Non Access Modifiers: ... 45

What is Next? .. 46

Java Basic Operators ... 47

The Arithmetic Operators: ... 47

The Relational Operators: ... 48

Example .. 49

The Bitwise Operators: .. 49

Example .. 50

The Logical Operators: .. 51

Example .. 51

The Assignment Operators: ... 51

Example: ... 52

Misc Operators .. 53

Conditional Operator (?:): .. 53

instanceof Operator: .. 54

Precedence of Java Operators: ... 54

What is Next? .. 55

Java Loop Control .. 56

The while Loop: ... 56

Syntax: .. 56

Example: ... 56

The do...while Loop: .. 57

Syntax: .. 57

Example: ... 57

The for Loop: ... 58

Syntax: .. 58

Example: ... 58

Enhanced for loop in Java: .. 59

Syntax: .. 59

Example: ... 59

The break Keyword: .. 59

Syntax: .. 60

Example: ... 60

Preview from Notesale.co.uk

Page 6 of 317

TUTORIALS POINT

Simply Easy Learning

The continue Keyword: .. 60

Syntax: .. 60

Example: ... 60

What is Next? .. 61

Java Decision Making .. 62

The if Statement: ... 62

Syntax: .. 62

Example: ... 62

The if...else Statement: .. 63

Syntax: .. 63

Example: ... 63

The if...else if...else Statement: ... 63

Syntax: .. 63

Example: ... 64

Nested if...else Statement: .. 64

Syntax: .. 64

Example: ... 64

The switch Statement: ... 65

Syntax: .. 65

Example: ... 65

What is Next? .. 66

Java Numbers .. 67

Example: ... 67

Number Methods: .. 68

xxxValue().. 69

compareTo() .. 70

equals() ... 71

valueOf() .. 72

toString() .. 73

parseInt() ... 74

abs() .. 75

ceil() ... 76

floor() ... 77

rint() ... 78

round() ... 78

min() .. 79

max() ... 80

exp() .. 81

log() ... 82

Preview from Notesale.co.uk

Page 7 of 317

TUTORIALS POINT

Simply Easy Learning

String trim() .. 152

static String valueOf(primitive data type x) .. 153

Java Arrays .. 156

Declaring Array Variables: ... 156

Example: ... 156

Creating Arrays: ... 156

Example: ... 157

Processing Arrays: .. 157

Example: ... 157

The foreach Loops: .. 158

Example: ... 158

Passing Arrays to Methods: ... 158

Returning an Array from a Method: ... 159

The Arrays Class: .. 159

Java Date and Time ... 160

Getting Current Date & Time ... 161

Date Comparison: .. 161

Date Formatting using SimpleDateFormat: ... 161

Simple DateFormat format codes: ... 162

Date Formatting using printf: ... 162

Date and Time Conversion Characters: .. 164

Parsing Strings into Dates: .. 165

Sleeping for a While: ... 165

Measuring Elapsed Time: .. 166

GregorianCalendar Class: ... 166

Example: ... 168

Java Regular Expressions .. 170

Capturing Groups: ... 170

Example: ... 171

Regular Expression Syntax: .. 171

Methods of the Matcher Class: .. 172

Index Methods: .. 172

Study Methods: .. 173

Replacement Methods: .. 173

The start and end Methods: ... 173

The matches and lookingAt Methods: ... 174

The replaceFirst and replaceAll Methods: ... 175

The appendReplacement and appendTail Methods: 175

PatternSyntaxException Class Methods: ... 176

Preview from Notesale.co.uk

Page 10 of 317

TUTORIALS POINT

Simply Easy Learning

Java Environment Setup

Before we proceed further, it is important that we set up the Java environment correctly. This section

guides you on how to download and set up Java on your machine. Please follow the following steps to set up the
environment.

Java SE is freely available from the link Download Java. So you download a version based on your operating
system.

Follow the instructions to download Java and run the .exe to install Java on your machine. Once you installed Java

on your machine, you would need to set environment variables to point to correct installation directories:

Setting up the path for windows 2000/XP:
Assuming you have installed Java in c:\Program Files\java\jdk directory:

 Right-click on 'My Computer' and select 'Properties'.

 Click on the 'Environment variables' button under the 'Advanced' tab.

 Now, alter the 'Path' variable so that it also contains the path to the Java executable. Example, if the path is
currently set to 'C:\WINDOWS\SYSTEM32', then change your path to read
'C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin'.

Setting up the path for windows 95/98/ME:
Assuming you have installed Java in c:\Program Files\java\jdk directory:

 Edit the 'C:\autoexec.bat' file and add the following line at the end:
'SET PATH=%PATH%;C:\Program Files\java\jdk\bin'

Setting up the path for Linux, UNIX, Solaris, FreeBSD:
Environment variable PATH should be set to point to where the Java binaries have been installed. Refer to your
shell documentation if you have trouble doing this.

Example, if you use bash as your shell, then you would add the following line to the end of your '.bashrc: export

PATH=/path/to/java:$PATH'

CHAPTER

2

Preview from Notesale.co.uk

Page 18 of 317

TUTORIALS POINT

Simply Easy Learning

Classes in Java:
A class is a blue print from which individual objects are created.

A sample of a class is given below:

public class Dog{

String breed;

int age;

String color;

void barking(){

}

void hungry(){

}

void sleeping(){

}

}

A class can contain any of the following variable types.

 Local variables: Variables defined inside methods, constructors or blocks are called local variables. The

variable will be declared and initialized within the method and the variable will be destroyed when the method
has completed.

 Instance variables: Instance variables are variables within a class but outside any method. These variables

are instantiated when the class is loaded. Instance variables can be accessed from inside any method,
constructor or blocks of that particular class.

 Class variables: Class variables are variables declared within a class, outside any method, with the static

keyword.

A class can have any number of methods to access the value of various kinds of methods. In the above example,
barking(), hungry() and sleeping() are methods.

Below mentioned are some of the important topics that need to be discussed when looking into classes of the Java
Language.

Constructors:
When discussing about classes, one of the most important subtopic would be constructors. Every class has a
constructor. If we do not explicitly write a constructor for a class the Java compiler builds a default constructor for
that class.

Each time a new object is created, at least one constructor will be invoked. The main rule of constructors is that they
should have the same name as the class. A class can have more than one constructor.

Example of a constructor is given below:

public class Puppy{

public Puppy(){

}

public Puppy(String name){

// This constructor has one parameter, name.

}

}

Java also supports Singleton Classes where you would be able to create only one instance of a class.

Preview from Notesale.co.uk

Page 26 of 317

TUTORIALS POINT

Simply Easy Learning

ObjectReference.variableName;

/* Now you can call a class method as follows */

ObjectReference.MethodName();

Example:
This example explains how to access instance variables and methods of a class:

public class Puppy{

int puppyAge;

public Puppy(String name){

// This constructor has one parameter, name.

System.out.println("Passed Name is :"+ name);

}

public void setAge(int age){

puppyAge = age;

}

public int getAge(){

System.out.println("Puppy's age is :"+ puppyAge);

return puppyAge;

}

 public static void main(String[]args){

/* Object creation */

Puppy myPuppy =newPuppy("tommy");

/* Call class method to set puppy's age */

myPuppy.setAge(2);

/* Call another class method to get puppy's age */

 myPuppy.getAge();

/* You can access instance variable as follows as well */

System.out.println("Variable Value :"+ myPuppy.puppyAge);

}

}

If we compile and run the above program, then it would produce the following result:

PassedName is:tommy

Puppy's age is :2

Variable Value :2

Source file declaration rules:
As the last part of this section, let’s now look into the source file declaration rules. These rules are essential when
declaring classes, import statements and package statements in a source file.

 There can be only one public class per source file.

 A source file can have multiple non public classes.

 The public class name should be the name of the source file as well which should be appended by .java at the
end. For example : The class name is . public class Employee{} Then the source file should be as
Employee.java.

Preview from Notesale.co.uk

Page 29 of 317

TUTORIALS POINT

Simply Easy Learning

Salary:500.0

What is Next?
Next session will discuss basic data types in Java and how they can be used when developing Java applications.

Preview from Notesale.co.uk

Page 32 of 317

TUTORIALS POINT

Simply Easy Learning

Java Literals:
A literal is a source code representation of a fixed value. They are represented directly in the code without any
computation.

Literals can be assigned to any primitive type variable. For example:

byte a =68;

char a ='A'

byte, int, long, and short can be expressed in decimal(base 10),hexadecimal(base 16) or octal(base 8) number
systems as well.

Prefix 0 is used to indicate octal and prefix 0x indicates hexadecimal when using these number systems for literals.
For example:

int decimal=100;

int octal =0144;

int hexa =0x64;

String literals in Java are specified like they are in most other languages by enclosing a sequence of characters
between a pair of double quotes. Examples of string literals are:

"Hello World"

"two\nlines"

"\"This is in quotes\""

String and char types of literals can contain any Unicode characters. For example:

char a ='\u0001';

String a ="\u0001";

Java language supports few special escape sequences for String and char literals as well. They are:

Notation Character represented

\n Newline (0x0a)

\r Carriage return (0x0d)

\f Formfeed (0x0c)

\b Backspace (0x08)

\s Space (0x20)

\t Tab

\" Double quote

\' Single quote

\\ Backslash

\ddd Octal character (ddd)

\uxxxx Hexadecimal UNICODE character (xxxx)

Preview from Notesale.co.uk

Page 36 of 317

TUTORIALS POINT

Simply Easy Learning

Java Variable Types

Avariable provides us with named storage that our programs can manipulate. Each variable in Java has a

specific type, which determines the size and layout of the variable's memory; the range of values that can be
stored within that memory; and the set of operations that can be applied to the variable.

You must declare all variables before they can be used. The basic form of a variable declaration is shown here:

data type variable [= value][, variable [= value] ...] ;

Here data type is one of Java's datatypes and variable is the name of the variable. To declare more than one
variable of the specified type, you can use a comma-separated list.

Following are valid examples of variable declaration and initialization in Java:

int a, b, c; // Declares three ints, a, b, and c.

int a = 10, b = 10; // Example of initialization

byte B = 22; // initializes a byte type variable B.

double pi = 3.14159; // declares and assigns a value of PI.

char a = 'a'; // the char variable a iis initialized with value 'a'

This chapter will explain various variable types available in Java Language. There are three kinds of variables in
Java:

 Local variables

 Instance variables

 Class/static variables

Local variables:

 Local variables are declared in methods, constructors, or blocks.

 Local variables are created when the method, constructor or block is entered and the variable will be destroyed
once it exits the method, constructor or block.

 Access modifiers cannot be used for local variables.

CHAPTER

6

Preview from Notesale.co.uk

Page 38 of 317

TUTORIALS POINT

Simply Easy Learning

Private Access Modifier - private:
Methods, Variables and Constructors that are declared private can only be accessed within the declared class itself.

Private access modifier is the most restrictive access level. Class and interfaces cannot be private.

Variables that are declared private can be accessed outside the class if public getter methods are present in the
class.

Using the private modifier is the main way that an object encapsulates itself and hide data from the outside world.

Example:
The following class uses private access control:

public class Logger{

private String format;

public String getFormat(){

return this.format;

}

 public void setFormat(String format){

this.format = format;

}

}

Here, the format variable of the Logger class is private, so there's no way for other classes to retrieve or set its
value directly.

So to make this variable available to the outside world, we defined two public methods: getFormat(), which returns
the value of format, and setFormat(String), which sets its value.

Public Access Modifier - public:
A class, method, constructor, interface etc declared public can be accessed from any other class. Therefore fields,
methods, blocks declared inside a public class can be accessed from any class belonging to the Java Universe.

However if the public class we are trying to access is in a different package, then the public class still need to be
imported.

Because of class inheritance, all public methods and variables of a class are inherited by its subclasses.

Example:
The following function uses public access control:

public static void main(String[] arguments){

// ...

}

The main() method of an application has to be public. Otherwise, it could not be called by a Java interpreter (such
as java) to run the class.

Protected Access Modifier - protected:
Variables, methods and constructors which are declared protected in a superclass can be accessed only by the
subclasses in other package or any class within the package of the protected members' class.

Preview from Notesale.co.uk

Page 44 of 317

TUTORIALS POINT

Simply Easy Learning

}

This produces the following result:

false

true

false

valueOf()

Description:

The valueOf method returns the relevant Number Object holding the value of the argument passed. The
argument can be a primitive data type, String, etc.

This method is a static method. The method can take two arguments, where one is a String and the other is a
radix.

Syntax:
All the variants of this method are given below:

staticInteger valueOf(int i)

staticInteger valueOf(String s)

staticInteger valueOf(String s,int radix)

Parameters:

Here is the detail of parameters:

 i -- An int for which Integer representation would be returned.

 s -- A String for which Integer representation would be returned.

 radix -- This would be used to decide the value of returned Integer based on passed String.

Return Value:
 valueOf(int i): This returns an Integer object holding the value of the specified primitive.

 valueOf(String s): This returns an Integer object holding the value of the specified string representation.

 valueOf(String s, int radix): This returns an Integer object holding the integer value of the specified

string representation, parsed with the value of radix.

public class Test{

public static void main(String args[]){

Integer x =Integer.valueOf(9);

Double c =Double.valueOf(5);

Float a =Float.valueOf("80");

Integer b =Integer.valueOf("444",16);

System.out.println(x);

Preview from Notesale.co.uk

Page 73 of 317

TUTORIALS POINT

Simply Easy Learning

 A primitive data types

Return Value:

 This method returns the maximum of the two arguments.

Example:

public class Test{

public static void main(String args[]){

System.out.println(Math.max(12.123,12.456));

System.out.println(Math.max(23.12,23.0));

}

}

This produces the following result:

12.456

23.12

exp()

Description:

The method returns the base of the natural logarithms, e, to the power of the argument.

Syntax:

double exp(double d)

Parameters:

Here is the detail of parameters:

 d -- A primitive data types

Return Value:

 This method Returns the base of the natural logarithms, e, to the power of the argument.

Example:

public class Test{

public static void main(String args[]){

double x =11.635;

double y =2.76;

System.out.printf("The value of e is %.4f%n",Math.E);

Preview from Notesale.co.uk

Page 82 of 317

TUTORIALS POINT

Simply Easy Learning

System.out.printf("exp(%.3f) is %.3f%n", x,Math.exp(x));

}

}

This produces the following result:

The value of e is 2.7183

exp(11.635) is 112983.831

log()

Description:

The method returns the natural logarithm of the argument.

Syntax:

double log(double d)

Parameters:

Here is the detail of parameters:

 d -- A primitive data types

Return Value:

 This method Returns the natural logarithm of the argument.

Example:

public class Test{

public static void main(String args[]){

double x =11.635;

double y =2.76;

System.out.printf("The value of e is %.4f%n",Math.E);

System.out.printf("log(%.3f) is %.3f%n", x,Math.log(x));

}

}

This produces the following result:

The value of e is 2.7183

log(11.635) is 2.454

pow()

Description:

Preview from Notesale.co.uk

Page 83 of 317

TUTORIALS POINT

Simply Easy Learning

double radians =Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n",Math.PI);

System.out.format("The sine of %.1f degrees is

%.4f%n",degrees,Math.sin(radians));

}

}

This produces the following result:

The value of pi is 3.1416

The sine of 45.0 degrees is 0.7071

cos()

Description:

The method returns the cosine of the specified double value.

Syntax:

double cos(double d)

Parameters:

Here is the detail of parameters:

 d -- A double data types

Return Value:

 This method Returns the cosine of the specified double value.

Example:

public class Test{

public static void main(String args[]){

double degrees =45.0;

double radians =Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n",Math.PI);

System.out.format("The cosine of %.1f degrees is %.4f%n",

 degrees,Math.cos(radians));

}

}

This produces the following result:

The value of pi is 3.1416

Preview from Notesale.co.uk

Page 86 of 317

TUTORIALS POINT

Simply Easy Learning

 d -- A double data types

Return Value:

 This method Returns the arccosine of the specified double value.

Example:

public class Test{

public static void main(String args[]){

double degrees =45.0;

double radians =Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n",Math.PI);

System.out.format("The arccosine of %.4f is %.4f degrees %n",

Math.cos(radians),

Math.toDegrees(Math.acos(Math.sin(radians))));

}

}

This produces the following result:

The value of pi is 3.1416

The arccosine of 0.7071 is 45.0000 degrees

atan()

Description:

The method returns the arctangent of the specified double value.

Syntax:

double atan(double d)

Parameters:

Here is the detail of parameters:

 d -- A double data types

Return Value :

 This method Returns the arctangent of the specified double value.

Example:

Preview from Notesale.co.uk

Page 89 of 317

TUTORIALS POINT

Simply Easy Learning

}

This produces the following result:

0.982793723247329

toDegrees()

Description:

The method converts the argument value to degrees.

Syntax:

double toDegrees(double d)

Parameters:

Here is the detail of parameters:

 d -- A double data type.

Return Value:

 This method returns a double value.

Example:

public class Test{

public static void main(String args[]){

double x =45.0;

double y =30.0;

System.out.println(Math.toDegrees(x));

System.out.println(Math.toDegrees(y));

}

}

This produces the following result:

2578.3100780887044

1718.8733853924698

toRadians()

Description:

The method converts the argument value to radians.

Preview from Notesale.co.uk

Page 91 of 317

TUTORIALS POINT

Simply Easy Learning

Java Characters

Normally, when we work with characters, we use primitive data types char.

Example:
char ch ='a';

// Unicode for uppercase Greek omega character

char uniChar ='\u039A';

// an array of chars

char[] charArray ={'a','b','c','d','e'};

However in development, we come across situations where we need to use objects instead of primitive data types.
Inorder to achieve this, Java provides wrapper class Character for primitive data type char.

The Character class offers a number of useful class (i.e., static) methods for manipulating characters. You can
create a Character object with the Character constructor:

Character ch =newCharacter('a');

The Java compiler will also create a Character object for you under some circumstances. For example, if you pass a
primitive char into a method that expects an object, the compiler automatically converts the char to a Character for
you. This feature is called autoboxing or unboxing, if the conversion goes the other way.

Example:
// Here following primitive char 'a'

// is boxed into the Character object ch

Character ch ='a';

// Here primitive 'x' is boxed for method test,

// return is unboxed to char 'c'

char c = test('x');

Escape Sequences:
A character preceded by a backslash (\) is an escape sequence and has special meaning to the compiler.

CHAPTER

12

Preview from Notesale.co.uk

Page 94 of 317

TUTORIALS POINT

Simply Easy Learning

isDigit()

Description:

The method determines whether the specified char value is a digit.

Syntax:

boolean isDigit(char ch)

Parameters:

Here is the detail of parameters:

 ch -- Primitive character type

Return Value:

 This method Returns true if passed character is really a digit.

Example:

public class Test{

public static void main(String args[]){

System.out.println(Character.isDigit('c'));

System.out.println(Character.isDigit('5'));

}

}

This produces the following result:

false

true

isWhitespace()

Description:

The method determines whether the specified char value is a white space, which includes space, tab or new
line.

Syntax:

boolean isWhitespace(char ch)

Preview from Notesale.co.uk

Page 97 of 317

TUTORIALS POINT

Simply Easy Learning

This produces the following result:

Returned String: hello world

Returned String: llo wo

boolean endsWith(String suffix)

Description:

This method tests if this string ends with the specified suffix.

Syntax:
Here is the syntax of this method:

public boolean endsWith(String suffix)

Parameters:

Here is the detail of parameters:

 suffix -- the suffix.

Return Value:

 This method returns true if the character sequence represented by the argument is a suffix of the
character sequence represented by this object; false otherwise. Note that the result will be true if the
argument is the empty string or is equal to this String object as determined by the equals(Object) method.

Example:

public class Test{

public static void main(String args[]){

String Str=new String("This is really not immutable!!");

boolean retVal;

 retVal =Str.endsWith("immutable!!");

System.out.println("Returned Value = "+ retVal);

 retVal =Str.endsWith("immu");

System.out.println("Returned Value = "+ retVal);

}

}

This produces the following result:

Returned Value = true

Returned Value = false

Preview from Notesale.co.uk

Page 114 of 317

TUTORIALS POINT

Simply Easy Learning

This method compares this String to another String, ignoring case considerations. Two strings are considered
equal ignoring case if they are of the same length, and corresponding characters in the two strings are equal
ignoring case.

Syntax:

Here is the syntax of this method:

public boolean equalsIgnoreCase(String anotherString)

Parameters:

Here is the detail of parameters:

 anotherString -- the String to compare this String against

Return Value:

 This method returns true if the argument is not null and the Strings are equal, ignoring case; false
otherwise.

Example:

public class Test{

public static void main(String args[]){

String Str1=new String("This is really not immutable!!");

String Str2=Str1;

String Str3=new String("This is really not immutable!!");

String Str4=new String("This IS REALLY NOT IMMUTABLE!!");

boolean retVal;

 retVal =Str1.equals(Str2);

System.out.println("Returned Value = "+ retVal);

 retVal =Str1.equals(Str3);

System.out.println("Returned Value = "+ retVal);

 retVal =Str1.equalsIgnoreCase(Str4);

System.out.println("Returned Value = "+ retVal);

}

}

This produces the following result:

Returned Value = true

Returned Value = true

Returned Value = true

byte getBytes()

Description:

Preview from Notesale.co.uk

Page 116 of 317

TUTORIALS POINT

Simply Easy Learning

String Str=new String("Welcome to Tutorialspoint.com");

StringSubStr1=new String("Tutorials");

StringSubStr2=new String("Sutorials");

System.out.print("Found Index :");

System.out.println(Str.indexOf('o'));

System.out.print("Found Index :");

System.out.println(Str.indexOf('o',5));

System.out.print("Found Index :");

System.out.println(Str.indexOf(SubStr1));

System.out.print("Found Index :");

System.out.println(Str.indexOf(SubStr1,15));

System.out.print("Found Index :");

System.out.println(Str.indexOf(SubStr2));

}

}

This produces the following result:

Found Index :4

Found Index :9

Found Index :11

Found Index :-1

Found Index :-1

int indexOf(String str, int fromIndex)

Description:

This method has following different variants:

 public int indexOf(int ch): Returns the index within this string of the first occurrence of the specified

character or -1 if the character does not occur.

 public int indexOf(int ch, int fromIndex): Returns the index within this string of the first occurrence of
the specified character, starting the search at the specified index or -1 if the character does not occur.

 int indexOf(String str): Returns the index within this string of the first occurrence of the specified

substring. If it does not occur as a substring, -1 is returned.

 int indexOf(String str, int fromIndex): Returns the index within this string of the first occurrence of the

specified substring, starting at the specified index. If it does not occur, -1 is returned.

Syntax:
Here is the syntax of this method:

public int indexOf(int ch)

or

public int indexOf(int ch,int fromIndex)

or

int indexOf(String str)

or

Preview from Notesale.co.uk

Page 125 of 317

TUTORIALS POINT

Simply Easy Learning

 public int lastIndexOf(String str, int fromIndex): Returns the index within this string of the last

occurrence of the specified substring, searching backward starting at the specified index.

Syntax:
Here is the syntax of this method:

int lastIndexOf(int ch)

or

public int lastIndexOf(int ch,int fromIndex)

or

public int lastIndexOf(String str)

or

public int lastIndexOf(String str,int fromIndex)

Parameters:

Here is the detail of parameters:

 ch -- a character.

 fromIndex -- the index to start the search from.

 str -- A string.

Return Value:

 This method returns the index.

Example:

import java.io.*;

public class Test{

public static void main(String args[]){

String Str=new String("Welcome to Tutorialspoint.com");

String SubStr1=new String("Tutorials");

String SubStr2=new String("Sutorials");

System.out.print("Found Last Index :");

System.out.println(Str.lastIndexOf('o'));

System.out.print("Found Last Index :");

System.out.println(Str.lastIndexOf('o',5));

System.out.print("Found Last Index :");

System.out.println(Str.lastIndexOf(SubStr1));

System.out.print("Found Last Index :");

System.out.println(Str.lastIndexOf(SubStr1,15));

System.out.print("Found Last Index :");

System.out.println(Str.lastIndexOf(SubStr2));

}

Preview from Notesale.co.uk

Page 128 of 317

TUTORIALS POINT

Simply Easy Learning

}

System.out.println("");

System.out.println("Return Value :");

for(String retval:Str.split("-")){

System.out.println(retval);

}

}

}

This produces the following result:

Return Value :

Welcome

to-Tutorialspoint.com

Return Value :

Welcome

to

Tutorialspoint.com

Return Value:

Welcome

to

Tutorialspoint.com

Return Value :

Welcome

to

Tutorialspoint.com

boolean startsWith(String prefix)

Description:

This method has two variants and tests if a string starts with the specified prefix beginning a specified index or
by default at the beginning.

Syntax:
Here is the syntax of this method:

public boolean startsWith(String prefix,int toffset)

or

public boolean startsWith(String prefix)

Parameters:

Here is the detail of parameters:

 prefix -- the prefix to be matched.

 toffset -- where to begin looking in the string.

Preview from Notesale.co.uk

Page 143 of 317

TUTORIALS POINT

Simply Easy Learning

 toffset -- where to begin looking in the string.

Return Value:

 It returns true if the character sequence represented by the argument is a prefix of the character
sequence represented by this string; false otherwise.

Example:

import java.io.*;

public class Test{

public static void main(String args[]){

String Str=new String("Welcome to Tutorialspoint.com");

System.out.print("Return Value :");

System.out.println(Str.startsWith("Welcome"));

System.out.print("Return Value :");

System.out.println(Str.startsWith("Tutorials"));

System.out.print("Return Value :");

System.out.println(Str.startsWith("Tutorials",11));

}

}

This produces the following result:

Return Value :true

Return Value :false

Return Value :true

CharSequence subSequence(int beginIndex, int endIndex)

Description:

This method returns a new character sequence that is a subsequence of this sequence.

Syntax:
Here is the syntax of this method:

public CharSequence subSequence(int beginIndex,int endIndex)

Parameters:

Here is the detail of parameters:

 beginIndex -- the begin index, inclusive.

 endIndex -- the end index, exclusive.

Return Value:

Preview from Notesale.co.uk

Page 145 of 317

TUTORIALS POINT

Simply Easy Learning

System.out.println(Str.toCharArray());

}

}

This produces the following result:

Return Value :Welcome to Tutorialspoint.com

String toLowerCase()

Description:

This method has two variants. First variant converts all of the characters in this String to lower case using the
rules of the given Locale. This is equivalent to calling toLowerCase(Locale.getDefault()).

Second variant takes locale as an argument to be used while converting into lower case.

Syntax:
Here is the syntax of this method:

public String toLowerCase()

or

public String toLowerCase(Locale locale)

Parameters:

Here is the detail of parameters:

 NA

Return Value:

 It returns the String, converted to lowercase.

Example:

import java.io.*;

public class Test{

public static void main(String args[]){

String Str=new String("Welcome to Tutorialspoint.com");

System.out.print("Return Value :");

System.out.println(Str.toLowerCase());

}

}

This produces the following result:

Preview from Notesale.co.uk

Page 149 of 317

TUTORIALS POINT

Simply Easy Learning

 It returns a copy of this string with leading and trailing white space removed, or this string if it has no
leading or trailing white space.

Example:

import java.io.*;

public class Test{

public static void main(String args[]){

String Str=new String(" Welcome to Tutorialspoint.com ");

System.out.print("Return Value :");

System.out.println(Str.trim());

}

}

This produces the following result:

Return Value :Welcome to Tutorialspoint.com

static String valueOf(primitive data type x)

Description:

This method has followings variants, which depend on the passed parameters. This method returns the string
representation of the passed argument.

 valueOf(boolean b): Returns the string representation of the boolean argument.

 valueOf(char c): Returns the string representation of the char argument.

 valueOf(char[] data): Returns the string representation of the char array argument.

 valueOf(char[] data, int offset, int count): Returns the string representation of a specific subarray of the
char array argument.

 valueOf(double d): Returns the string representation of the double argument.

 valueOf(float f): Returns the string representation of the float argument.

 valueOf(int i): Returns the string representation of the int argument.

 valueOf(long l): Returns the string representation of the long argument.

 valueOf(Object obj): Returns the string representation of the Object argument.

Syntax:
Here is the syntax of this method:

static String valueOf(boolean b)

or

static String valueOf(char c)

or

static String valueOf(char[] data)

or

Preview from Notesale.co.uk

Page 154 of 317

TUTORIALS POINT

Simply Easy Learning

}

// Summing all elements

double total =0;

for(int i =0; i < myList.length; i++){

total += myList[i];

}

System.out.println("Total is "+ total);

// Finding the largest element

double max = myList[0];

for(int i =1; i < myList.length; i++){

if(myList[i]> max) max = myList[i];

}

System.out.println("Max is "+ max);

}

}

This would produce the following result:

1.9

2.9

3.4

3.5

Totalis11.7

Maxis3.5

The foreach Loops:
JDK 1.5 introduced a new for loop known as foreach loop or enhanced for loop, which enables you to traverse the
complete array sequentially without using an index variable.

Example:
The following code displays all the elements in the array myList:

public class TestArray{

public static void main(String[] args){

double[] myList ={1.9,2.9,3.4,3.5};

// Print all the array elements

for(double element: myList){

System.out.println(element);

}

}

}

This would produce the following result:

1.9

2.9

3.4

3.5

Passing Arrays to Methods:
Just as you can pass primitive type values to methods, you can also pass arrays to methods. For example, the
following method displays the elements in an int array:

public static void printArray(int[] array){

Preview from Notesale.co.uk

Page 159 of 317

TUTORIALS POINT

Simply Easy Learning

Java Date and Time

Java provides the Date class available in java.util package, this class encapsulates the current date and time.

The Date class supports two constructors. The first constructor initializes the object with the current date and time.

Date()

The following constructor accepts one argument that equals the number of milliseconds that have elapsed since
midnight, January 1, 1970

Date(long millisec)

Once you have a Date object available, you can call any of the following support methods to play with dates:

SN Methods with Description

1

boolean after(Date date)

Returns true if the invoking Date object contains a date that is later than the one specified by date, otherwise,
it returns false.

2

boolean before(Date date)

Returns true if the invoking Date object contains a date that is earlier than the one specified by date,
otherwise, it returns false.

3
Object clone()

Duplicates the invoking Date object.

4

int compareTo(Date date)

Compares the value of the invoking object with that of date. Returns 0 if the values are equal. Returns a
negative value if the invoking object is earlier than date. Returns a positive value if the invoking object is later
than date.

5
int compareTo(Object obj)

Operates identically to compareTo(Date) if obj is of class Date. Otherwise, it throws a ClassCastException.

6

boolean equals(Object date)

Returns true if the invoking Date object contains the same time and date as the one specified by date,
otherwise, it returns false.

7
long getTime()

Returns the number of milliseconds that have elapsed since January 1, 1970.

8 int hashCode()

CHAPTER

15

Preview from Notesale.co.uk

Page 161 of 317

TUTORIALS POINT

Simply Easy Learning

System.out.println("Current Date: "+ ft.format(dNow));

}

}

This would produce the following result:

CurrentDate:Sun2004.07.18 at 04:14:09 PM PDT

Simple DateFormat format codes:
To specify the time format, use a time pattern string. In this pattern, all ASCII letters are reserved as pattern letters,
which are defined as the following:

Character Description Example

G Era designator AD

Y Year in four digits 2001

M Month in year July or 07

D Day in month 10

H Hour in A.M./P.M. (1~12) 12

H Hour in day (0~23) 22

M Minute in hour 30

S Second in minute 55

S Millisecond 234

E Day in week Tuesday

D Day in year 360

F Day of week in month 2 (second Wed. in July)

W Week in year 40

W Week in month 1

A A.M./P.M. marker PM

K Hour in day (1~24) 24

K Hour in A.M./P.M. (0~11) 10

Z Time zone Eastern Standard Time

' Escape for text Delimiter

" Single quote `

Date Formatting using printf:
Date and time formatting can be done very easily using printf method. You use a two-letter format, starting
with t and ending in one of the letters of the table given below. For example:

import java.util.Date;

Preview from Notesale.co.uk

Page 163 of 317

TUTORIALS POINT

Simply Easy Learning

Q Milliseconds since 1970-01-01 00:00:00 GMT 1078884319047

There are other useful classes related to Date and time. For more details, you can refer to Java Standard
documentation.

Parsing Strings into Dates:
The SimpleDateFormat class has some additional methods, notably parse() , which tries to parse a string according
to the format stored in the given SimpleDateFormat object. For example:

import java.util.*;

import java.text.*;

public class DateDemo{

public static void main(String args[]){

SimpleDateFormat ft =new SimpleDateFormat("yyyy-MM-dd");

String input = args.length ==0?"1818-11-11": args[0];

System.out.print(input +" Parses as ");

Date t;

try{

 t = ft.parse(input);

System.out.println(t);

}catch(ParseException e){

System.out.println("Unparseable using "+ ft);

}

}

}

A sample run of the above program would produce the following result:

$ java DateDemo

1818-11-11ParsesasWedNov1100:00:00 GMT 1818

$ java DateDemo2007-12-01

2007-12-01ParsesasSatDec0100:00:00 GMT 2007

Sleeping for a While:
You can sleep for any period of time from one millisecond up to the lifetime of your computer. For example,
following program would sleep for 10 seconds:

import java.util.*;

public class SleepDemo{

public static void main(String args[]){

try{

System.out.println(new Date()+"\n");

Thread.sleep(5*60*10);

System.out.println(new Date()+"\n");

}catch(Exception e){

System.out.println("Got an exception!");

}

}

}

Preview from Notesale.co.uk

Page 166 of 317

TUTORIALS POINT

Simply Easy Learning

There is also a special group, group 0, which always represents the entire expression. This group is not included in
the total reported by groupCount.

Example:
Following example illustrates how to find a digit string from the given alphanumeric string:

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public class RegexMatches

{

public static void main(String args[]){

// String to be scanned to find the pattern.

String line ="This order was places for QT3000! OK?";

String pattern ="(.*)(\\d+)(.*)";

// Create a Pattern object

Pattern r =Pattern.compile(pattern);

// Now create matcher object.

Matcher m = r.matcher(line);

if(m.find()){

System.out.println("Found value: "+ m.group(0));

System.out.println("Found value: "+ m.group(1));

System.out.println("Found value: "+ m.group(2));

}else{

System.out.println("NO MATCH");

}

}

}

This would produce the following result:

Found value:This order was places for QT3000! OK?

Found value:This order was places for QT300

Found value:0

Regular Expression Syntax:
Here is the table listing down all the regular expression metacharacter syntax available in Java:

Subexpression Matches

^ Matches beginning of line.

$ Matches end of line.

. Matches any single character except newline. Using m option allows it to match newline as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets

\A Beginning of entire string

\z End of entire string

\Z End of entire string except allowable final line terminator.

Preview from Notesale.co.uk

Page 172 of 317

TUTORIALS POINT

Simply Easy Learning

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more of the previous thing

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding expression.

a| b Matches either a or b.

(re) Groups regular expressions and remembers matched text.

(?: re) Groups regular expressions without remembering matched text.

(?> re) Matches independent pattern without backtracking.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before newline.

\z Matches end of string.

\G Matches point where last match finished.

\n Back-reference to capture group number "n"

\b
Matches word boundaries when outside brackets. Matches backspace (0x08) when inside
brackets.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriage returns, tabs, etc.

\Q Escape (quote) all characters up to \E

\E Ends quoting begun with \Q

Methods of the Matcher Class:
Here is a list of useful instance methods:

Index Methods:
Index methods provide useful index values that show precisely where the match was found in the input string:

SN Methods with Description

Preview from Notesale.co.uk

Page 173 of 317

TUTORIALS POINT

Simply Easy Learning

Here is a list of most common checked and unchecked Java's Built-in Exceptions.

Java’s Built-in Exceptions

Java defines several exception classes inside the standard package java.lang.

The most general of these exceptions are subclasses of the standard type RuntimeException. Since java.lang is
implicitly imported into all Java programs, most exceptions derived from RuntimeException are automatically
available.

Java defines several other types of exceptions that relate to its various class libraries. Following is the list of Java
Unchecked RuntimeException.

Exception Description

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

Preview from Notesale.co.uk

Page 206 of 317

TUTORIALS POINT

Simply Easy Learning

Java Inheritance

Inheritance can be defined as the process where one object acquires the properties of another. With the use of

inheritance, the information is made manageable in a hierarchical order.

When we talk about inheritance, the most commonly used keyword would be extends and implements. These

words would determine whether one object IS-A type of another. By using these keywords we can make one object
acquire the properties of another object.

IS-A Relationship:
IS-A is a way of saying : This object is a type of that object. Let us see how the extends keyword is used to achieve

inheritance.

public class Animal{

}

public class Mammal extends Animal{

}

public class Reptile extends Animal{

}

public class Dog extends Mammal{

}

Now, based on the above example, In Object Oriented terms the following are true:

 Animal is the superclass of Mammal class.

 Animal is the superclass of Reptile class.

 Mammal and Reptile are subclasses of Animal class.

 Dog is the subclass of both Mammal and Animal classes.

Now, if we consider the IS-A relationship, we can say:

 Mammal IS-A Animal

 Reptile IS-A Animal

CHAPTER

20

Preview from Notesale.co.uk

Page 214 of 317

TUTORIALS POINT

Simply Easy Learning

Mammal m =new Mammal();

Dog d =new Dog();

System.out.println(m instanceof Animal);

System.out.println(d instanceof Mammal);

System.out.println(d instanceof Animal);

}

}

This would produce the following result:

true

true

true

HAS-A relationship:
These relationships are mainly based on the usage. This determines whether a certain class HAS-Acertain thing.

This relationship helps to reduce duplication of code as well as bugs.

Lets us look into an example:

public class Vehicle{}

public class Speed{}

public class Van extends Vehicle{

privateS peed sp;

}

This shows that class Van HAS-A Speed. By having a separate class for Speed, we do not have to put the entire
code that belongs to speed inside the Van class which makes it possible to reuse the Speed class in multiple
applications.

In Object-Oriented feature, the users do not need to bother about which object is doing the real work. To achieve
this, the Van class hides the implementation details from the users of the Van class. So basically what happens is
the users would ask the Van class to do a certain action and the Van class will either do the work by itself or ask
another class to perform the action.

A very important fact to remember is that Java only supports only single inheritance. This means that a class cannot
extend more than one class. Therefore following is illegal:

public class extendsAnimal,Mammal{}

However, a class can implement one or more interfaces. This has made Java get rid of the impossibility of multiple
inheritance.

Preview from Notesale.co.uk

Page 216 of 317

TUTORIALS POINT

Simply Easy Learning

 The access level cannot be more restrictive than the overridden method's access level. For example, if the
superclass method is declared public, then the overriding method in the subclass cannot be either private or
protected.

 Instance methods can be overridden only if they are inherited by the subclass.

 A method declared final cannot be overridden.

 A method declared static cannot be overridden but can be re-declared.

 If a method cannot be inherited, then it cannot be overridden.

 A subclass within the same package as the instance's superclass can override any superclass method that is
not declared private or final.

 A subclass in a different package can only override the non-final methods declared public or protected.

 An overriding method can throw any uncheck exceptions, regardless of whether the overridden method throws
exceptions or not. However the overriding method should not throw checked exceptions that are new or
broader than the ones declared by the overridden method. The overriding method can throw narrower or fewer
exceptions than the overridden method.

 Constructors cannot be overridden.

Using the super keyword:
When invoking a superclass version of an overridden method the super keyword is used.

class Animal{

public void move(){

System.out.println("Animals can move");

}

}

class Dog extends Animal{

public void move(){

super.move();// invokes the super class method

System.out.println("Dogs can walk and run");

}

}

public class TestDog{

public static void main(String args[]){

Animal b =new Dog();// Animal reference but Dog object

 b.move();//Runs the method in Dog class

}

}

This would produce the following result:

Animals can move

Dogs can walk and run

Preview from Notesale.co.uk

Page 219 of 317

TUTORIALS POINT

Simply Easy Learning

Java Packages

Packages are used in Java inorder to prevent naming conflicts, to control access, to make searching/locating

and usage of classes, interfaces, enumerationsss and annotations easier, etc.

A Package can be defined as a grouping of related types(classes, interfaces, enumerations and annotations)
providing access protection and name space management.

Some of the existing packages in Java are:

 java.lang - bundles the fundamental classes

 java.io - classes for input , output functions are bundled in this package

Programmers can define their own packages to bundle group of classes/interfaces, etc. It is a good practice to
group related classes implemented by you so that a programmer can easily determine that the classes, interfaces,
enumerations, annotations are related.

Since the package creates a new namespace there won't be any name conflicts with names in other packages.
Using packages, it is easier to provide access control and it is also easier to locate the related classed.

Creating a package:
When creating a package, you should choose a name for the package and put a package statement with that name

at the top of every source file that contains the classes, interfaces, enumerations, and annotation types that you
want to include in the package.
The package statement should be the first line in the source file. There can be only one package statement in each

source file, and it applies to all types in the file.

If a package statement is not used then the class, interfaces, enumerations, and annotation types will be put into an
unnamed package.

Example:
Let us look at an example that creates a package called animals. It is common practice to use lowercased names

of packages to avoid any conflicts with the names of classes, interfaces.

Put an interface in the package animals:

/* File name : Animal.java */

package animals;

interface Animal{

public void eat();

public void travel();

CHAPTER

26

Preview from Notesale.co.uk

Page 234 of 317

TUTORIALS POINT

Simply Easy Learning

 The fully qualified name of the class can be used. For example:

payroll.Employee

 The package can be imported using the import keyword and the wild card (*). For example:

import payroll.*;

 The class itself can be imported using the import keyword. For example:

import payroll.Employee;

Note: A class file can contain any number of import statements. The import statements must appear after the

package statement and before the class declaration.

The Directory Structure of Packages:
Two major results occur when a class is placed in a package:

 The name of the package becomes a part of the name of the class, as we just discussed in the previous
section.

 The name of the package must match the directory structure where the corresponding bytecode resides.

Here is simple way of managing your files in Java:

Put the source code for a class, interface, enumeration, or annotation type in a text file whose name is the simple
name of the type and whose extension is .java. For example:

// File Name : Car.java

package vehicle;

public class Car{

// Class implementation.

}

Now, put the source file in a directory whose name reflects the name of the package to which the class belongs:

....\vehicle\Car.java

Now, the qualified class name and pathname would be as below:

 Class name -> vehicle.Car

 Path name -> vehicle\Car.java (in windows)

In general, a company uses its reversed Internet domain name for its package names. Example: A company's
Internet domain name is apple.com, then all its package names would start with com.apple. Each component of the
package name corresponds to a subdirectory.

Example: The company had a com.apple.computers package that contained a Dell.java source file, it would be
contained in a series of subdirectories like this:

....\com\apple\computers\Dell.java

Preview from Notesale.co.uk

Page 236 of 317

TUTORIALS POINT

Simply Easy Learning

Vector(int size,int incr)

The fourth form creates a vector that contains the elements of collection c:

Vector(Collection c)

Apart from the methods inherited from its parent classes, Vector defines the following methods:

SN Methods with Description

1
void add(int index, Object element)

Inserts the specified element at the specified position in this Vector.

2
boolean add(Object o)

Appends the specified element to the end of this Vector.

3

boolean addAll(Collection c)

Appends all of the elements in the specified Collection to the end of this Vector, in the order that
they are returned by the specified Collection's Iterator.

4
boolean addAll(int index, Collection c)

Inserts all of the elements in in the specified Collection into this Vector at the specified position.

5
void addElement(Object obj)

Adds the specified component to the end of this vector, increasing its size by one.

6
int capacity()

Returns the current capacity of this vector.

7
void clear()

Removes all of the elements from this Vector.

8
Object clone()

Returns a clone of this vector.

9
boolean contains(Object elem)

Tests if the specified object is a component in this vector.

10
boolean containsAll(Collection c)

Returns true if this Vector contains all of the elements in the specified Collection.

11
void copyInto(Object[] anArray)

Copies the components of this vector into the specified array.

12
Object elementAt(int index)

Returns the component at the specified index.

13
Enumeration elements()

Returns an enumeration of the components of this vector.

14

void ensureCapacity(int minCapacity)

Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of
components specified by the minimum capacity argument.

15
boolean equals(Object o)

Compares the specified Object with this Vector for equality.

16
Object firstElement()

Returns the first component (the item at index 0) of this vector.

17
Object get(int index)

Returns the element at the specified position in this Vector.

Preview from Notesale.co.uk

Page 244 of 317

TUTORIALS POINT

Simply Easy Learning

How to use an Iterator?

Often, you will want to cycle through the elements in a collection. For example, you might want to display each
element.

The easiest way to do this is to employ an iterator, which is an object that implements either the Iterator or the
ListIterator interface.

Iterator enables you to cycle through a collection, obtaining or removing elements. ListIterator extends Iterator to
allow bidirectional traversal of a list and the modification of elements.

SN Iterator Methods with Description

1
Using Java Iterator
Here is a list of all the methods with examples provided by Iterator and ListIterator interfaces.

Using Java Iterator
Often, you will want to cycle through the elements in a collection. For example, you might want to display each
element.

The easiest way to do this is to employ an iterator, which is an object that implements either the Iterator or the
ListIterator interface.

Iterator enables you to cycle through a collection, obtaining or removing elements. ListIterator extends Iterator to
allow bidirectional traversal of a list, and the modification of elements.

Before you can access a collection through an iterator, you must obtain one. Each of the collection classes provides
an iterator() method that returns an iterator to the start of the collection. By using this iterator object, you can
access each element in the collection, one element at a time.

In general, to use an iterator to cycle through the contents of a collection, follow these steps:

 Obtain an iterator to the start of the collection by calling the collection's iterator() method.

 Set up a loop that makes a call to hasNext(). Have the loop iterate as long as hasNext() returns true.

 Within the loop, obtain each element by calling next().

For collections that implement List, you can also obtain an iterator by calling ListIterator.

The Methods Declared by Iterator:

SN Methods with Description

1
boolean hasNext()

Returns true if there are more elements. Otherwise, returns false.

2
Object next()

Returns the next element. Throws NoSuchElementException if there is not a next element.

3

void remove()

Removes the current element. Throws IllegalStateException if an attempt is made to call remove() that is not
preceded by a call to next().

Preview from Notesale.co.uk

Page 259 of 317

TUTORIALS POINT

Simply Easy Learning

 }

 System.out.println();

 // Modify objects being iterated

 ListIterator litr = al.listIterator();

 while(litr.hasNext()) {

 Object element = litr.next();

 litr.set(element + "+");

 }

 System.out.print("Modified contents of al: ");

 itr = al.iterator();

 while(itr.hasNext()) {

 Object element = itr.next();

 System.out.print(element + " ");

 }

 System.out.println();

 // Now, display the list backwards

 System.out.print("Modified list backwards: ");

 while(litr.hasPrevious()) {

 Object element = litr.previous();

 System.out.print(element + " ");

 }

 System.out.println();

 }

}

This would produce the following result:

Original contents of al: C A E B D F

Modified contents of al: C+ A+ E+ B+ D+ F+

Modified list backwards: F+ D+ B+ E+ A+ C+

How to use a Comparator?
Both TreeSet and TreeMap store elements in sorted order. However, it is the comparator that defines precisely
what sorted order means.

This interface lets us sort a given collection any number of different ways. Also, this interface can be used to sort
any instances of any class(even classes we cannot modify).

SN Iterator Methods with Description

1
Using Java Comparator
Here is a list of all the methods with examples provided by Comparator Interface.

Using Java Comparator
Both TreeSet and TreeMap store elements in sorted order. However, it is the comparator that defines precisely
what sorted order means.

The Comparator interface defines two methods: compare() and equals(). The compare() method, shown here,
compares two elements for order:

The compare Method:

int compare(Object obj1, Object obj2)

Preview from Notesale.co.uk

Page 261 of 317

TUTORIALS POINT

Simply Easy Learning

// Display array elements

for(E element : inputArray){

System.out.printf("%s ", element);

}

System.out.println();

}

public static void main(String args[])

{

// Create arrays of Integer, Double and Character

Integer[] intArray ={1,2,3,4,5};

Double[] doubleArray ={1.1,2.2,3.3,4.4};

Character[] charArray ={'H','E','L','L','O'};

System.out.println("Array integerArray contains:");

 printArray(intArray);// pass an Integer array

System.out.println("\nArray doubleArray contains:");

 printArray(doubleArray);// pass a Double array

System.out.println("\nArray characterArray contains:");

 printArray(charArray);// pass a Character array

}

}

This would produce the following result:

Array integerArray contains:

123456

Array doubleArray contains:

1.12.23.34.4

Array characterArray contains:

H E L L O

Bounded Type Parameters:
There may be times when you'll want to restrict the kinds of types that are allowed to be passed to a type
parameter. For example, a method that operates on numbers might only want to accept instances of Number or its
subclasses. This is what bounded type parameters are for.

To declare a bounded type parameter, list the type parameter's name, followed by the extends keyword, followed by
its upper bound.

Example:
Following example illustrates how extends is used in a general sense to mean either "extends" (as in classes) or
"implements" (as in interfaces). This example is Generic method to return the largest of three Comparable objects:

public class MaximumTest

{

// determines the largest of three Comparable objects

publicstatic<T extendsComparable<T>> T maximum(T x, T y, T z)

{

T max = x;// assume x is initially the largest

if(y.compareTo(max)>0){

 max = y;// y is the largest so far

}

Preview from Notesale.co.uk

Page 265 of 317

TUTORIALS POINT

Simply Easy Learning

if(z.compareTo(max)>0){

max = z;// z is the largest now

}

return max;// returns the largest object

}

public static void main(String args[])

{

System.out.printf("Max of %d, %d and %d is %d\n\n",3,4,5, maximum(3,4,5));

System.out.printf("Maxm of %.1f,%.1f and %.1f is %.1f\n\n",6.6,8.8,7.7,

maximum(6.6,8.8,7.7));

System.out.printf("Max of %s, %s and %s is %s\n","pear",

"apple","orange", maximum("pear","apple","orange"));

}

}

This would produce the following result:

Maximum of 3,4and5is5

Maximum of 6.6,8.8and7.7is8.8

Maximum of pear, apple and orange is pear

Generic Classes:
A generic class declaration looks like a non-generic class declaration, except that the class name is followed by a
type parameter section.

As with generic methods, the type parameter section of a generic class can have one or more type parameters
separated by commas. These classes are known as parameterized classes or parameterized types because they
accept one or more parameters.

Example:
Following example illustrates how we can define a generic class:

public class Box<T>{

private T t;

publicvoid add(T t){

this.t = t;

}

public T get(){

return t;

}

public static void main(String[] args){

Box<Integer> integerBox =new Box<Integer>();

Box<String> stringBox =new Box<String>();

integerBox.add(newInteger(10));

stringBox.add(new String("Hello World"));

System.out.printf("Integer Value :%d\n\n", integerBox.get());

System.out.printf("String Value :%s\n", stringBox.get());

Preview from Notesale.co.uk

Page 266 of 317

TUTORIALS POINT

Simply Easy Learning

Java Networking

The term network programming refers to writing programs that execute across multiple devices (computers),

in which the devices are all connected to each other using a network.

The java.net package of the J2SE APIs contains a collection of classes and interfaces that provide the low-level
communication details, allowing you to write programs that focus on solving the problem at hand.

The java.net package provides support for the two common network protocols:

 TCP: TCP stands for Transmission Control Protocol, which allows for reliable communication between two

applications. TCP is typically used over the Internet Protocol, which is referred to as TCP/IP.

 UDP: UDP stands for User Datagram Protocol, a connection-less protocol that allows for packets of data to be

transmitted between applications.

This tutorial gives good understanding on the following two subjects:

 Socket Programming: This is most widely used concept in Networking and it has been explained in very

detail.

 URL Processing: This would be covered separately. Click here to learn about URL Processing in Java

language.

Url Processing
URL stands for Uniform Resource Locator and represents a resource on the World Wide Web, such as a Web page
or FTP directory.

This section shows you how to write Java programs that communicate with a URL. A URL can be broken down into
parts, as follows:

protocol://host:port/path?query#ref

Examples of protocols include HTTP, HTTPS, FTP, and File. The path is also referred to as the filename, and the
host is also called the authority.

The following is a URL to a Web page whose protocol is HTTP:

http://www.amrood.com/index.htm?language=en#j2se

Notice that this URL does not specify a port, in which case the default port for the protocol is used. With HTTP, the
default port is 80.

CHAPTER

31

Preview from Notesale.co.uk

Page 271 of 317

TUTORIALS POINT

Simply Easy Learning

import javax.mail.internet.*;

import javax.activation.*;

public class SendHTMLEmail

{

public static void main(String[] args)

{

// Recipient's email ID needs to be mentioned.

String to ="abcd@gmail.com";

// Sender's email ID needs to be mentioned

Stringfrom="web@gmail.com";

// Assuming you are sending email from localhost

String host ="localhost";

// Get system properties

Properties properties =System.getProperties();

// Setup mail server

properties.setProperty("mail.smtp.host", host);

// Get the default Session object.

Session session =Session.getDefaultInstance(properties);

try{

// Create a default MimeMessage object.

MimeMessage message =new MimeMessage(session);

// Set From: header field of the header.

message.setFrom(new InternetAddress(from));

// Set To: header field of the header.

message.addRecipient(Message.RecipientType.TO,

newInternetAddress(to));

// Set Subject: header field

message.setSubject("This is the Subject Line!");

// Send the actual HTML message, as big as you like

message.setContent("<h1>This is actual message</h1>",

"text/html");

// Send message

Transport.send(message);

System.out.println("Sent message successfully....");

}catch(MessagingException mex){

 mex.printStackTrace();

}

}

}

Compile and run this program to send an HTML e-mail:

$ java SendHTMLEmail

Sent message successfully....

Preview from Notesale.co.uk

Page 283 of 317

TUTORIALS POINT

Simply Easy Learning

Thread: Thread-2, 3

Thread: Thread-1, 2

Thread: Thread-2, 2

Thread: Thread-1, 1

Thread: Thread-2, 1

Thread Thread-1 exiting.

Thread Thread-2 exiting.

Create Thread by Extending Thread Class:
The second way to create a thread is to create a new class that extends Thread class using the following two

simple steps. This approach provides more flexibility in handling multiple threads created using available methods in
Thread class.

STEP 1
You will need to override run() method available in Thread class. This method provides entry point for the thread
and you will put you complete business logic inside this method. Following is simple syntax of run() method:

public void run()

STEP 2

Once Thread object is created, you can start it by calling start() method, which executes a call to run() method.

Following is simple syntax of start() method:

void start();

Example:
Here is the preceding program rewritten to extend Thread:

class ThreadDemo extends Thread {

 private Thread t;

 private String threadName;

 ThreadDemo(String name){

 threadName = name;

 System.out.println("Creating " + threadName);

 }

 public void run() {

 System.out.println("Running " + threadName);

 try {

 for(int i = 4; i > 0; i--) {

 System.out.println("Thread: " + threadName + ", " + i);

 // Let the thread sleep for a while.

 Thread.sleep(50);

 }

 } catch (InterruptedException e) {

 System.out.println("Thread " + threadName + " interrupted.");

 }

 System.out.println("Thread " + threadName + " exiting.");

 }

 public void start ()

 {

 System.out.println("Starting " + threadName);

 if (t == null)

 {

Preview from Notesale.co.uk

Page 289 of 317

TUTORIALS POINT

Simply Easy Learning

The current thread invokes this method on a second thread, causing the current thread to block until the
second thread terminates or the specified number of milliseconds passes.

7
public void interrupt()

Interrupts this thread, causing it to continue execution if it was blocked for any reason.

8

public final boolean isAlive()

Returns true if the thread is alive, which is any time after the thread has been started but before it runs to
completion.

The previous methods are invoked on a particular Thread object. The following methods in the Thread class are
static. Invoking one of the static methods performs the operation on the currently running thread.

SN Methods with Description

1

public static void yield()

Causes the currently running thread to yield to any other threads of the same priority that are waiting to be
scheduled.

2
public static void sleep(long millisec)

Causes the currently running thread to block for at least the specified number of milliseconds.

3
public static boolean holdsLock(Object x)

Returns true if the current thread holds the lock on the given Object.

4
public static Thread currentThread()

Returns a reference to the currently running thread, which is the thread that invokes this method.

5

public static void dumpStack()

Prints the stack trace for the currently running thread, which is useful when debugging a multithreaded
application.

Example:
The following ThreadClassDemo program demonstrates some of these methods of the Thread class. Consider a
class DisplayMessage which implements Runnable:

// File Name : DisplayMessage.java

// Create a thread to implement Runnable

public class DisplayMessage implements Runnable

{

 private String message;

 public DisplayMessage(String message)

 {

 this.message = message;

 }

 public void run()

 {

 while(true)

 {

 System.out.println(message);

 }

 }

}

Following is another class which extends Thread class:

// File Name : GuessANumber.java

// Create a thread to extentd Thread

public class GuessANumber extends Thread

Preview from Notesale.co.uk

Page 291 of 317

TUTORIALS POINT

Simply Easy Learning

This would produce the following result. You can try this example again and again and you would get different result
every time.

Starting hello thread...

Starting goodbye thread...

Hello

Hello

Hello

Hello

Hello

Hello

Goodbye

Goodbye

Goodbye

Goodbye

Goodbye

.......

Major Java Multithreading Concepts:
While doing Multithreading programming in Java, you would need to have the following concepts very handy:

 What is thread synchronization?

 Handling threads inter communication

 Handling thread deadlock

 Major thread operations

What is Thread synchronization?
When we start two or more threads within a program, there may be a situation when multiple threads try to access
the same resource and finally they can produce unforeseen result due to concurrency issue. For example if multiple
threads try to write within a same file then they may corrupt the data because one of the threads can overrite data or
while one thread is opening the same file at the same time another thread might be closing the same file.

So there is a need to synchronize the action of multiple threads and make sure that only one thread can access the
resource at a given point in time. This is implemented using a concept called monitors. Each object in Java is

associated with a monitor, which a thread can lock or unlock. Only one thread at a time may hold a lock on a
monitor.

Java programming language provides a very handy way of creating threads and synchronizing their task by
using synchronized blocks. You keep shared resources within this block. Following is the general form of the

synchronized statement:

synchronized(objectidentifier) {

 // Access shared variables and other shared resources

}

Here, the objectidentifier is a reference to an object whose lock associates with the monitor that the synchronized

statement represents. Now we are going to see two examples where we will print a counter using two different
threads. When threads are not synchronized, they print counter value which is not in sequence, but when we print
counter by putting inside synchronized() block, then it prints counter very much in sequence for both the threads.

Multithreading example without Synchronization:
Here is a simple example which may or may not print counter value in sequence and every time we run it, it
produces different result based on CPU availability to a thread.

Preview from Notesale.co.uk

Page 293 of 317

TUTORIALS POINT

Simply Easy Learning

class PrintDemo {

 public void printCount(){

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println("Counter --- " + i);

 }

 } catch (Exception e) {

 System.out.println("Thread interrupted.");

 }

 }

}

class ThreadDemo extends Thread {

 private Thread t;

 private String threadName;

 PrintDemo PD;

 ThreadDemo(String name, PrintDemo pd){

 threadName = name;

 PD = pd;

 }

 public void run() {

 PD.printCount();

 System.out.println("Thread " + threadName + " exiting.");

 }

 public void start ()

 {

 System.out.println("Starting " + threadName);

 if (t == null)

 {

 t = new Thread (this, threadName);

 t.start ();

 }

 }

}

public class TestThread {

 public static void main(String args[]) {

 PrintDemo PD = new PrintDemo();

 ThreadDemo T1 = new ThreadDemo("Thread - 1 ", PD);

 ThreadDemo T2 = new ThreadDemo("Thread - 2 ", PD);

 T1.start();

 T2.start();

 // wait for threads to end

 try {

 T1.join();

 T2.join();

 } catch(Exception e) {

 System.out.println("Interrupted");

 }

 }

}

This produces different result every time you run this program:

Preview from Notesale.co.uk

Page 294 of 317

TUTORIALS POINT

Simply Easy Learning

Starting Thread - 1

Starting Thread - 2

Counter --- 5

Counter --- 4

Counter --- 3

Counter --- 5

Counter --- 2

Counter --- 1

Counter --- 4

Thread Thread - 1 exiting.

Counter --- 3

Counter --- 2

Counter --- 1

Thread Thread - 2 exiting.

Multithreading example with Synchronization:
Here is the same example which prints counter value in sequence and every time we run it, it produces same result.

class PrintDemo {

 public void printCount(){

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println("Counter --- " + i);

 }

 } catch (Exception e) {

 System.out.println("Thread interrupted.");

 }

 }

}

class ThreadDemo extends Thread {

 private Thread t;

 private String threadName;

 PrintDemo PD;

 ThreadDemo(String name, PrintDemo pd){

 threadName = name;

 PD = pd;

 }

 public void run() {

 synchronized(PD) {

 PD.printCount();

 }

 System.out.println("Thread " + threadName + " exiting.");

 }

 public void start ()

 {

 System.out.println("Starting " + threadName);

 if (t == null)

 {

 t = new Thread (this, threadName);

 t.start ();

 }

 }

}

Preview from Notesale.co.uk

Page 295 of 317

TUTORIALS POINT

Simply Easy Learning

Java Applet Basics

An applet is a Java program that runs in a Web browser. An applet can be a fully functional Java

application because it has the entire Java API at its disposal.

There are some important differences between an applet and a standalone Java application, including the following:

 An applet is a Java class that extends the java.applet.Applet class.

 A main() method is not invoked on an applet, and an applet class will not define main().

 Applets are designed to be embedded within an HTML page.

 When a user views an HTML page that contains an applet, the code for the applet is downloaded to the
user's machine.

 A JVM is required to view an applet. The JVM can be either a plug-in of the Web browser or a separate
runtime environment.

 The JVM on the user's machine creates an instance of the applet class and invokes various methods during
the applet's lifetime.

 Applets have strict security rules that are enforced by the Web browser. The security of an applet is often
referred to as sandbox security, comparing the applet to a child playing in a sandbox with various rules that
must be followed.

 Other classes that the applet needs can be downloaded in a single Java Archive (JAR) file.

Life Cycle of an Applet:
Four methods in the Applet class give you the framework on which you build any serious applet:

 init: This method is intended for whatever initialization is needed for your applet. It is called after the
param tags inside the applet tag have been processed.

 start: This method is automatically called after the browser calls the init method. It is also called whenever
the user returns to the page containing the applet after having gone off to other pages.

 stop: This method is automatically called when the user moves off the page on which the applet sits. It
can, therefore, be called repeatedly in the same applet.

CHAPTER

34

Preview from Notesale.co.uk

Page 303 of 317

