Moles of gas

One mole of any gas has approximately the same volume as any other gas at a particular temperature and pressure. (This is **Avogadro's Law**).

Example: $2 C_4 H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2 O_2$

What volume of oxygen is needed to react with 15 cm³ of butane under room conditions?

From the equation, 1 mole of butane reacts with 6.5 moles of oxygen.

Therefore, 1 volume of butane needs 6.5 volumes oxygen.

Therefore, 15 cm³ of butane needs $15 \times 6.5 = 97.5$ cm³ oxygen.

At room temperature and 1Atm this is 24dm³ (24000cm³). (At 0°C and 1Atm this is 22.4dm³).

So the number of moles of a gas at room temperature can be found from the formula.

The concentration of a solution can be stated as the mass of solute per cubic decimeter of solution (g/dm^3) or the amount in moles of a solute present in $1dm^3$ of solution (mol/dm³).

To make a solution of 1mol dm⁻³ concentration, 1mol of substance is dissolved and the solution made up to a total volume of 1dm³.

Examples

1. Calculate the concentration of a solution containing 2.4g MgSO₄ in 500cm³ of solution.

Moles = 2.4 / 120 = 0.02molConcentration = 0.02mol / 0.5dm³ = 0.04moldm⁻³

2. Calculate the mass of NaOH required to make 100cm³ of a 0.2 mol dm⁻³ solution.

 $Moles = Concentration \times Volume (dm³)$ $= 0.2 \times 0.1 = 0.02mol$

 $Mass = Moles \times Formula mass$ = 0.02 x 40 = 0.8g