Electron Configuration & Chemical Periodicity

Wednesday, October 21, 2015 8:42 AM

Each orbital can be described by three quantum numbers. But, each electron in an atom can be described by **four** quantum numbers.

- m(sub(s)): describes spin, either positive or negative 1/2
 - Up arrow: "spin up" electron
 - Down arrow: "spin down" electron
- Pauli Exclusion Principle: two electrons in the same atom cannot have the same four quantum numbers. In each orbital, there is on electron with m(sub(s)) = +1/2 and on with m(sub(s)) = -1/2.
- **Electron configuration:** describes how electrons are distributed in atomic orbitals

 - He 1s2 (n = 1, l = 0, ml = 0, m(sub(s)) = -1/2
 Sublevel energies and order for filling electrons
 3d is higher than 4s
- - Electrons enter chila of lower energy file
 - Orbitals are filed before moving to a higher energy orbital (Aufbau
- Ground state: lowest energy config.
- Excited state: higher energy config. than ground state
- Hund's Rule: when orbitals of equal energy are available, the ground state has the max number of unpaired electrons with parallel spins
- Paramagnetic: atom with one or more unpaired electrons, attracted to magnetic field

Exceptions to Aufbau Principle (know just these 5 exceptions)

Cr: [Ar] 4s2 3d4 is wrong, really [Ar] 4s1 3d5 (also true for Mo); half-filled d orbitals are lower energy than d4

Cu: [Ar] 4s2 3d9 is wrong, really [Ar] 4s1 3d10 (also Ag and Au); completely filled d orbitals are lower energy than d9

Some definitions...

- Fe: [Ar] 4s2 3d6
 - Inner (core) electrons in common w/ previous noble gas and any filled d