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Abstract

If price and quantity are the fundamental building blocks of any theory of market interac-
tions, the importance of trading volume in understanding the behavior of finargial markets
is clear. However, while many economic models of financial markets e IXgeveloped
to explain the behavior of prices—predictability, variability, edr@ tlon content—far
less attention has been devoted to explaining the ﬁ ing volume. In this arti-
cle, we hope to expand our understanding @&go me by developing well-articulated
economic models of asset prices a N mpir 2mat1ng them using recently
available daily volume dat ‘\‘él Secumﬁ% niversity of Chicago’s Center
for Research in % Prices. Our he%gtl ontributions include: (1) an economic
defini \iﬂi at is aﬂg{ nt“with theoretical models of trading activity; (2)
the d P\;cmson of volume imp}Ca basic portfolio theory; and (3) the development of an
intertemporal equilibrium model of asset market in which the trading process is determined
endogenously by liquidity needs and risk-sharing motives. Our empirical contributions in-
clude: (1) the construction of a volume/returns database extract of the CRSP volume data;
(2) comprehensive exploratory data analysis of both the time-series and cross-sectional prop-
erties of trading volume; (3) estimation and inference for price/volume relations implied by
asset-pricing models; and (4) a new approach for empirically identifying factors to be in-
cluded in a linear-factor model of asset returns using volume data.

*MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142-1347, and NBER. Finan-
cial support from the Laboratory for Financial Engineering and the National Science Foundation (Grant No.
SBR-9709976) is gratefully acknowledged.
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construct the hedging portfolio and its returns. We find that the hedging-portfolio returns
consistently outperforms other factors in predicting future returns to the market portfolio,
an implication of the intertemporal equilibrium model. We then use the returns to the hedg-
ing and market portfolios as two risk factors in a cross-sectional test along the lines of Fama
and MacBeth (1973), and find that the hedging portfolio is comparable to other factors in
explaining the cross-sectional variation of expected returns.

We conclude with suggestions for future research in Section 8.

2 Measuring Trading Activity

Any empirical analysis of trading activity in the market must start with a proper measure
of volume. The literature on trading activity in financial markets is extensive and a number
of measures of volume have been proposed and studied.® Some studies of aggregate trading
activity use the total number of shares traded as a measure of volume (see Epps and Epps
(1976), Gallant, Rossi, and Tauchen (1992), Hiemstra and Jones (1994), and Ying (1966)).
Other studies use aggregate turnover—the total number of shares traded dividqd,by the to-
tal number of shares outstanding—as a measure of volume (see Ca &am
(1993), LeBaron (1992), Smidt (1990), and the 1996 :gk
volume is often used in the analysis of prlc Vi ]@ &y /volume relations (see An-
dersen (1996), Epps and Ep mour apes (1990, 1994)). Studies
focusing on the l‘matlon even %ng activity use individual turnover as a
meastfe)d @Jﬁ (see Ban?a@ 87) Lakomshok and Smidt (1986), Morse (1980),
Richardson, Sefcik, Thom 1986), Stickel and Verrecchia (1994)). Alternatively, Tkac
(1996) considers individual dollar volume normalized by aggregate market dollar-volume.

And even the total number of trades (Conrad, Hameed, and Niden (1994)) and the number

Wang

Individual share

of trading days per year (James and Edmister (1983)) have been used as measures of trading
activity. Table 1 provides a summary of the various measures used in a representative sample
of the recent volume literature. These differences suggest that different applications call for
different volume measures.

In order to proceed with our analysis, we need to first settle on a measure of volume.
After developing some basic notation in Section 2.1, we review several volume measures in

Section 2.2 and provide some economic motivation for turnover as a canonical measure of

3See Karpoff (1987) for an excellent introduction to and survey of this burgeoning literature.
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Figure 1: Weekly Value-Weighted and Equal-Weighted Turnover Indexes, 1962 to 1996.
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Figure 2: Raw and Detrended Weekly Value-Weighted Turnover Indexes, 1962 to 1996.
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= =5 A 3 . 5 . A 3. 5 . . . . 500 5
Ty Tj Grj  Brj Gery Gry  Pry  Gerj vj pj dj SPj Y, (1)

1962 to 1966 (234 weeks)

o 0.576 0.374 0.009 2.230 0.646 0.080 1.046 4.562 17.404 1.249 0.059 0.175 —2.706
m  0.397 0.272 0.092 0.725 0.391 0.064 1.002 3.893 17.263 1.445 0.058 0.000 —0.851
s 0.641 0.372 1.065 5.062 0.889 0.339 0.529 2.406 1.737 0.965 0.081 0.380 8.463
1967 to 1971 (261 weeks)
“w 0.900 0.610—-0.361 3.134 0.910 0.086 1.272 5.367 17.930 1.442 0.049 0.178 —1.538
m  0.641 0.446 —0.128 1.948 0.612 0.081 1.225 5.104 17.791 1.522 0.042 0.000 —0.623
s 0.827 0.547 0.954 3.559 0.940 0.383 0.537 1.991 1.566 0.685 0.046 0.382 4.472
1972 to 1976 (261 weeks)
o 0.521 0.359 —0.025 1.472 0.535 0.085 0.986 6.252 17.574 0.823 0.072 0.162 —3.084
m  0.420 0.291 0.005 1.040 0.403 0.086 0.955 5.825 17.346 0.883 0.063 0.000 —1.007
s 0.408 0.292 0.432 1.595 0.473 0.319 0.429 2619 1.784 0.890 0.067 0.369 8.262
1977 to 1981 (261 weeks)
o 0.780 0.553 0.043 1.199 0.749 0.254 0.950 5.081 18.155 1.074 0.099 0.176 —1.748
m  0.629 0.449 0.052 0.818 0.566 0.215 0.936 4.737 18.094 1.212 0.086 0.000 —0.622
s 0.561 0.405 0.638 1.348 0.643 0.356 0.428 2.097 1.769 0.805 0.097 0.381 5.100
1982 to 1986 (261 weeks) \)\(
n 1.160 0.833 0.005 0.957 1.135 0.113 0.873 5.419 18.629 1.627
m  0.998 0.704 0.031 0.713 0.902 0.146 0.863 4.813 18 5 \ 0 000 —0.573
s 0.788 0.605 0.880 1.018 0.871 0.455 0.437 i 0 126  0.385 8.405
87 Weeks) 1 !
“w 1.255 0.888 0.333 @ 0. 07 0. 977 . 0.095 0.191 —5.096
m  0.995 0.708 0.171 0.014 ' QO @ 1 108 0.062 0.000 —0.386
s 1. 039 0. 77 . 9 1.272 0. 54 2 013 1.097 0.134 0.393 44.246

(G : 92 to 1996 (261 weeks)
1.419 1.032 0.379 8 0.147 0.851 5.722 19.407 1.081 0.063 0.182 —3.600
1.114 0.834 0.239 0.511 0 997 0.113 0.831 4.674 19.450 1.297 0.042 0.000 —1.136

s 1.208 0.910 1.637 1.572 1.480 0.482 0.520 3.901 2.007 1.032 0.095 0.386  21.550

Summary statistics of variables for cross-sectional analysis of weekly turnover of NYSE or AMEX ordinary common
shares (CRSP share codes 10 and 11, excluding 37 stocks containing Z-errors in reported volume) for subperiods of
the sample period from July 1962 to December 1996. The variables are: 7; (average turnover); 7; (median turnover);

Gr 5, Brj, and 6¢ 7 (the intercept, slope, and residual, respectively, from the time-series regression of an individual

security’s turnover on market turnover); & j, BATJ, and & ; (the intercept, slope, and residual, respectively, from
the time-series regression of an individual security’s return on the market return); v; (natural logarithm of market
capitalization); p; (natural logarithm of price); d; (dividend yield); SP?OO (S&P 500 indicator variable); and 4. j (1)
(first-order return autocovariance). The statistics are: p (mean); m (median); and s (standard deviation).

Table 10: Summary Statistics for Cross-Sectional Analysis of Weekly Turnover
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7j 7j Grj  Prj  Gery  Grj  Brj Gery  v;  pj  dj  SP3

1962 to 1966 (2,073 stocks)

7 93.1

r g —8.6 1.9

Br.; 56.6  43.9 —86.9

Gerr 88.8 70.3 —11.8 54.1

G 14.9 10.7  —12.0 16.9 14.8

Brj 56.3 59.3 —15.8 40.8 43.2 1.5

Ger 36.1 254 —19.5 34.0 45.8 16.3 29.2

v ~19.2 —11.4 9.6 —17.5 —28.9  —3.0 1.9 —62.7

pj —7.6 1.7 14.6 —16.0 —20.1 1.6 32 —T77.1 787

d; —114  -9.3 9.3 —132 —122 04 —17.0 —27.9 13.1 20.7

Sp200 —5.0 —0.6 4.8 —6.4 —10.2 —6.6 24 —242 431 320 48

Y3 (1) —0.6 3.0 57 —51 —7.6 —144 1.9 —632 311 527 129 107
1967 to 1971 (2,292 stocks)

7 96.8

Gur g —30.9 —23.0

3r 776 706 —83.8

e 92.2 80.7 —38.2 77.9

Gy 10.3 8.7 4.2 1.9 12.5

Brj 59.2 60.4 —31.2 55.4 50.0 —12.6

Ger 56.3 495 —36.7 57.0 60.7 —15 61.3

v; —325 —253 327 —405 —41.1 1.1 —23.7 —676

pj ~19.8 —11.9 356 —35.3 —30.1 16.7 —22.1 —68.9 77.0

d; —38.2 —37.2 19.8 —353 —35.2 30 —51.9 —57.1 28.0 283

SP§00 —14.0 -10.6 11.9 -161 —18.2 2.2  —11.5 —30.9 479 352 13,

Y3 (1) —87 —68 11.7 —12.8 —114 88 —149 —40.7 30.7 438 \1)&‘12.3
1972 to 1976 (2,084 stocks) CO .

7 96.5 \e-

Qg 2.5 8.9

3.5 67.4 602 —72.0 te

Gerr 83.9 69 4 —5.9 62.6 N

G 8.5 mm 0

Brj 54.3 54 3 6&( 39.7 _—14. “

er 222 = 17.9 35 D

v; 6 @ —27 A 12.6 —65.2

%\, 117 146 1.8 —76.1 837

ZE‘ 9 7183 @a —20.9 9.4 —342 —41.6 194 250

sjo0 1.2 —13.1 —2.2 9.1 —282 505 379 2.6

Y (1) 0.0 32 -52  —56 53 —83 —57.1 329 50.6 238 11.6
1977 to 1981 (2,352 stocks)

7 96.4

ur g 6.7 11.0

Gr; 61.9 55.1 —72.9

e 83.0 67.4 3.5 54.9

Gy j 10.6 28  —82 16.9 22.7

Brj 59.8 63.8 —11.0 47.1 35.6 3.2

Ger 28.5 183  —8.2 25.6 42.8 30.8 24.9

v 5.3 15.7 6.7 —20 —165 —26.8 16.4 —63.4

pj 8.1 17.1 11.7 —-36 —108 —9.0 122 —-70.1 80.8

d; —18.4 —18.2 38 —152 —14.7 1.4 —279 —273 9.9 13.0

SP§00 2.5 8.4 —0.4 2.5 -89 —19.0 85 —285 51.6 35.1 2.8

Y3 (1) 0.2 3.0 18 -13 —-53 -36 -23 -556 315 521 147 105

Table 11a: Correlation Matrix for Weekly Turnover Regressors
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= = A 5 s A 5. s ) ) ) 500
Tj Tj Qr,j Br,j Oe,1,j Qr,j Br.; Te,r,j vj pj dj SPj

1982 to 1986 (2,644 stocks)

7 96.2

G j —12.0 —5.6

Br.; 71.3 64.3 —77.8

Gerij 80.0 62.8 —19.8 64.7

& j 74  —109 —14.5 6.2 2.4

Brj 46.4 50.6 —12.6 38.3 248 —325

Gerj 15.4 7.3 12.3 0.7 25.2  —17.7 15.6

v; 19.0 29.7 -8.3 18.8 —5.0 —3.1 27.6  —55.7

p; 9.0 16.5 —12.4 15.3 —-5.9 22.3 10.3 —76.1 75.3

d; —6.7 —7.6 —4.1 —0.5 —2.5 155 —12.6 —21.4 16.6 20.5

sp?‘m 15.5 22.7 —2.0 12.1 —1.6 —3.8 18.2 —24.7 57.3 37.5 8.0

5 (1) 5.2 5.6 -89 9.5 4.1 18.9 —04 —39.2 15.7 326 7.1 5.2
1987 to 1991 (2,471 stocks)

7 94.1

r g 17.1 25.8

Gr 50.8 39.2  —76.0

Ger 79.1 56.6 -1.0 53.0

G 7.1 5.1 16.8 —9.7 9.2

Brj 45.4 49.4 5.0 25.5 22.3  —15.0

Geyrj 3.1 -3.6 —0.7 2.5 12.7 24.4 —26

v; 20.3 31.7 3.3 10.4 —2.0 5.6 224 —48.1

D; 12.3 22.0 6.4 2.5 —5.7 10.8 11.2  —62.0 80.4

d; -1.2 -1.9 -1.8 0.8 1.6 2.9 —47 -109 129 157 \Ag\(

SP§00 16.1 25.4 —1.4 11.6 —3.8 —2.4 19.1 —20.7 58 B9y ,

5 (1) 4.2 5.5 2.7 0.5 0.4 —39.5 11.7 14(; 0 2.9 4.4

\e
ij- 93:2 10.8 .\ éﬁe%%z
PN QmA?z of \

an] —2.8 %
g \EN oo
‘ @ a@ 36.3  24.2 4.2
10.1 23.8 9 188 —15.7 278 —615
3

5.8 17.2 —17.4 -84 162 —76.8 81.5

—9.5 -8.3 -1.5 —4.5 -9.3 0.4 —64 —146 13.3 154
SP500 6.6 15.9 —8.8 11.5 —12.3 -9.1 175 —24.2 56.7 37.7 11.0
fym(1) 2.3 4.9 -2.3 3.2 —3.8 1.2 121 —23.2 19.1 29.3 5.0 4.5

Correlation matrix of variables for cross-sectional analysis of weekly turnover of NYSE or AMEX ordinary common
shares (CRSP share codes 10 and 11, excluding 37 stocks containing Z-errors in reported volume) for subperiods of
the sample period from July 1962 to December 1996. The variables are: 7; (average turnover); 7; (median turnover);

Gr 5, Brj, and 6¢ 7 (the intercept, slope, and residual, respectively, from the time-series regression of an individual

security’s turnover on market turnover); & j, BATJ, and & ; (the intercept, slope, and residual, respectively, from
the time-series regression of an individual security’s return on the market return); v; (natural logarithm of market
capitalization), p; (natural logarithm of price); d; (dividend yield); SP?OO (S&P 500 indicator variable); and 4. (1)
(first-order return autocovariance).

Table 11b: Correlation Matrix for Weekly Turnover Regressors (continued)
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c G, Br.j Ger,j vj Pj d; SP500;  4r;(1) R? (%)

1982 to 1986 (261 weeks, 2,644 stocks)

—~1.385  0.051 0543  0.062  0.071  0.085 —0.223  0.091  0.006 31.6
(0.180)  (0.025)  (0.027)  (0.007)  (0.010)  (0.023)  (0.081)  (0.031)  (0.001)

~0.193  0.018  0.583  0.057 — 0.170 —0.182  0.187  0.005 30.4
(0.051)  (0.024) (0.027)  (0.007) (0.020)  (0.081)  (0.028)  (0.001)

~1.602  0.080  0.562  0.048  0.091 —  —0217  0.085  0.006 31.3
(0.170)  (0.023)  (0.027)  (0.005)  (0.009) (0.081)  (0.031)  (0.001)

1987 to 1991 (261 weeks, 2,471 stocks)

—~1.662  0.155  0.791 0038 0078  0.066 —0.138  0.131  0.003 31.9
(0.223)  (0.027)  (0.034)  (0.005) (0.013)  (0.024)  (0.097)  (0.041)  (0.001)

—0.313  0.153  0.831  0.035 — 0.158 —0.128  0.252  0.003 30.
(0.052)  (0.027)  (0.033)  (0.005) (0.019)  (0.098)  (0.036)  (0.001)

—~1.968 0171  0.795  0.031  0.100 —  —0.122  0.119 0 003
(0.195)  (0.026)  (0.034)  (0.005)  (0.010) (0.097)  (0.041) 6 u

1992 to 1996 (261 weeks, 2,520 stock: \j@
—1.004 —0.087 0.689 0.077 0.040 651 0.000 29.6
(0.278)  (0.034) (0.033)  (0.007) (0.0 %‘ 4) 0 049)  (0.001)
—0.310  —0.095 0.708 0.076 “ 4 .6 —0.001 29.4
(0.061)  (0.034) (0 03 (0. 0 6) (0.001)
—2.025 —0.025 < .115 & —0. 005 0.000 27.8
0.006)

(0.249)  (C? 0 166)  (0.049)  (0.001)

2

Table? Cross-sectional re£s1ons of median weekly turnover of NYSE and AMEX ordinary common
shares (CRSP share codes 10 and 11, excluding 37 stocks containing Z-errors in reported volume) for five-
year subperlods of the sample per1od from July 1982 to December 1996. The explanatory variables are:
Qo j, BT,j, and 6, ; (the intercept, slope, and residual, respectively, from the time-series regression of an
individual security’s return on the market return); v; (natural logarithm of market capitalization), p; (natural
logarithm of price); d; (dividend yield); SP500; (S&P 500 indicator variable); and 4, ;(1) (first-order return

autocovariance).
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responsible for another 5% to 20%. And in one case—in-sample sorting on betas relative to
the equal-weighted index during 1987-1991—the third principal component accounts for an
additional 10%. These figures suggest that the trend in turnover is unlikely to be the source
of the dominant first principal component.

In summary, the results of Tables 13 and 14 indicate that a one-factor model for turnover
is a reasonable approximation, at least in the case of turnover-beta-sorted portfolios, and
that a two-factor model captures well over 90% of the time-series variation in turnover. This
lends some support to the practice of estimating “abnormal” volume by using an event-
study style “market model”, e.g., Bamber (1986), Jain and Joh (1988), Lakonishok and
Smidt (1986), Morse (1980), Richardson, Sefcik, Thompson (1986), Stickel and Verrecchia
(1994), and Tkac (1996).

As compelling as these empirical results are, several qualifications should be kept in
mind. First, we have provided little statistical inference for our principal components de-
composition. In particular, the asymptotic standard errors reported in Tables 13 and 14
were computed under the assumption of IID Gaussian data, hardly appropriate for weekly
US stock returns and even less convincing for turnover (see Muirhead ( hapter 9)
for further details). Perhaps nonparametric methods such as é Mk bootstrap

ou

can provide better indications of the statistical ﬁ r estimated eigenvalues.
o chec

Monte Carlo simulations should also m N @P@ﬁmte sample properties of
our estimators. "( O “ ’L

More im B‘Ne\leconomic i gg%on of the first two principal components or,

altern@r v, dentlfylng tXP actors is a challenging issue that principal components
cannot resolve. More structure must be imposed on the data—in particular, an intertemporal
model of trading—to obtain a better understanding for the sources of turnover variation,

and we present such structure in the next section.

7 Volume Implications of Intertemporal Asset-Pricing
Models

In this section, we analyze the volume implications of intertemporal asset pricing models
and how volume is related to returns. We first develop an intertemporal equilibrium model
of stock trading and pricing with multiple assets and heterogeneous investors. We derive the

behavior of volume and returns. We show that both volume and returns are driven by the
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Period 61 (2 28} 04 05 06 67 05 (25 610

Out-of-Sample Turnover-Beta-Sorted Turnover-Differences Portfolios (tVW)
1967 to 1971  82.6 7.1 5.1 2.0 1.6 0.8 0.5 0.1 0.1 0.1
(7.2) (0.6) (0.5) (0.2) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0)
1972 to 1976  81.2 6.8 4.7 2.8 2.0 1.0 0.9 0.4 0.2 0.1
(7.1) (0.6) (0.4) (0.2) (0.2) (0.1) (0.1) (0.0) (0.0) (0.0)
1977 to 1981  85.2 4.5 2.9 2.6 1.6 1.2 0.8 0.5 0.5 0.2
(7.5) (0.4) (0.3) (0.2) (0.1) (0.1) (0.1) (0.0) (0.0) (0.0)
1982 to 1986  81.3 5.1 3.5 2.7 2.2 1.7 1.3 0.9 0.7 0.6
(7.1)  (0.4) (0.3) (0.2) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1)
1987 to 1991  73.1 10.9 4.1 3.0 2.2 1.7 1.6 1.4 1.1 0.9
(6.4) (1.0) (04) (03) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1)

1992 to 1996 78.4 8.6 4.0 2.8 2.1 1.2 1.0 0.9 0.6 0.4
(6.9) (0.8) (0.4) (0.2) (0.2) (0.1) (0.1) (0.1) (0.0) (0.0)

Out-of-Sample Turnover-Beta-Sorted Turnover-Differences Portfolios (TEW)

1967 to 1971 822 80 45 23 14 07 04 03 01 O \‘
(72)  (0.7) (04) (0.2) (0.1) (0.1) (0 0 (0. 0) (@ oY)

1972 t0 1976  79.3 7.5 48 40 19 1.3 * 01
(7.0)  (0.7) (0 4) (0.4) (0 2 0 1 a 0 0 (0.0)

1977 to 1981 80.3 5.3 . 0.2
(7.0) (0.5 0 4) N (o 1) 0 1 0 0 (0.0)

1982 to 1986  82.6 5.0 0.4
(7 3) O) (0 2 1) 0. 1 0 1 (0.0)

1987 to 1»99 . . 12 1.0
\’} (o 5) e o 2 (0. 2) (o 2 0 1) (0.1)  (0.1)

P ( @ 80.4 26 17 14 11 07 05 04

(0

(7.1) (0.2) (0.1) (0.1) (0.1) (0.1) (0.0) (0.0)

Table 14: Eigenvalues 9}-, t = 1,...,10 of the covariance matrix of the first-differences of the weekly
turnover of ten out-of-sample-beta-sorted portfolios of NYSE and AMEX ordinary common shares (CRSP
share codes 10 and 11, excluding 37 stocks containing Z-errors in reported volume)—in percentages (where
the eigenvalues are normalized to sum to 100%)—for subperiods of the sample period from July 1962 to
December 1996. Turnover betas are calculated in two ways: with respect to a value-weighted turnover index
(VW) and an equal-weighted turnover index (7EW). Standard errors for the normalized eigenvalues are
given in parentheses and are calculated under the assumption of IID normality.
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underlying risks of the economy. The results presented here are from Lo and Wang (2001b).

7.1 An Intertemporal Capital Asset-Pricing Model

Since our purpose is to draw qualitative implications on the joint behavior of return and
volume, the model is kept as parsimonious as possible. Several generalizations of the model

are discussed in Lo and Wang (2001b).

The Economy

We consider an economy defined on a set of discrete dates: ¢t = 0,1,2,.... There are J
risky stocks, each pays a stream of dividends over time. As before, D;; denote the dividend
of stock j at date ¢, j = 1,---,J, and Dy = [Dy;---Dy] denote the column vector of
dividends. Without loss of generality, in this section we assume that the total number of
shares outstanding is one for each stock.

A stock portfolio can be expressed in terms of its shares of each stock, denoted by
S = [S1...5], where S; is the number of stock j shares in the portfolio (j =1,...,J). A

portfolio of particular importance is the market portfolio, denoted by S 6 i \& given by
= tes \ (20)
where ¢ is a vector of 1’s Jﬁh‘*ogz\}t ftﬁ\?‘s tml end of the market portfolio,

which is the dend

In@d‘ to the stoc also a risk-free bond that yields a constant, positive
interest r per time perlod

There are I investors in the economy. Each investor is endowed with equal shares of the
stocks and no bond. Every period, investor ¢, ¢ = 1, ..., I, maximizes his expected utility of

the following form:

Et —G_Wtiﬂ_()‘XXt‘*')‘YYti)DMHl_AZ(H_Zg)XtH} (21)

where W/, is investor ¢’s wealth next period, X;, Y}, Z; are three one-dimensional state

variables, and Ax, Ay, Az are non-negative constants. Apparently, the utility function in
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(21) is state-dependent. We further assume

D YI=>2=0 (22)

where t =0,1,....
For simplicity, we assume that all the exogenous shocks, D;, Xy, {Y}, Zi,i = 1,...,1},
are IID over time with zero means. For tractability, we further assume that D;; and X;

are jointly normally distributed:

Oxp O0xX

d
Upp1 = < Dt ) ~ N {(,0) where o= ( opD DX ) (23)

Without loss of generality, opp is assumed to be positive definite.

Our model has several features that might seem unusual. One feature of the model is that
investors are assumed to have a myopic, but state-dependent utility function in (21). The
purpose for using this utility function is to capture the dynamic nature of the investment
problem without explicitly solving a dynamic optimization problem. T s@kpendence

of the utility function is assumed to have the following r e m;rginal utility of
@é ggregate dividend), as reflected
n

wealth depends on the dividend of the market

in the second term in the expone wg C

goes up, the margi ht% Qealth “ e marginal utility of wealth also
depen?oq eN,e\g e V? asgh rt ar X;1, as reflected in the third term in the
expondntial of the utility f is utility function can be interpreted as the equivalent

of a value function from an appropriately specified dynamic optimization problem (see, for

en the aggregate dividend

example, Wang (1994) and Lo and Wang (2001a)). More discussion is given in Lo and Wang
(2001b) on this point.

Another feature of the model is the IID assumption for the state variables. This might
leave the impression that the model is effectively static. This impression, however, is false
since the state-dependence of investors’ utility function introduces important dynamics over
time. We can allow richer dynamics for the state variables without changing the main
properties of the model.

The particular form of the utility function and the normality of distribution for the state

variables are assumed for tractability. These assumptions are restrictive. But we hope with
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p, the R? should be less than that of (50).

It is impractical to compare (50) to all possible portfolios, and uninformative to com-
pare it to random portfolios. Instead, we need only make comparisons to “optimal forecast
portfolios”, portfolios that are optimal forecasters of R,;, since by construction, no other
portfolios can have higher levels of predictability than these. The following proposition shows
how to construct optimal forecasting portfolios (OFPs) (see Lo and Wang, 2001 for details):

Proposition 7 Let 'y and I'y denote the contemporaneous and first-order autocovariance
matriz of the vector of all returns. For any arbitrary target portfolio q with weights w, =
(wq1; - - s wen), define A =Ty 'Thw,w,/T1'. The optimal forecast portfolio of w, is given by

the normalized eigenvector of A corresponding to its largest eigenvalue.

Since 'y and I'; are unobservable, they must be estimated using historical data. Given
the large number of stocks in our sample (over 2,000 in each subperiod) and the relatively
short time series in each subperiod (261 weekly observations), the standard estimators for
[y and I'; are not viable. However, it is possible to construct OFPs from a much smaller
number of “basis portfolios”, and then compare the predictive power o S to the
hedging portfolio. As long as the basis portfolios are not a‘ elaﬁ tﬁe R?s are likely

stocks.

to be similar to those obtained from the entﬁ,
ortl

We form several sets of basis

i 35 ‘2 J stocks into K groups of
equal numbers (K < &n 0: gﬁ‘ a@iza n, market beta, and SIC codes,
)\ t

and t N’:& ue-weighte hin each group.®® This procedure yields K
basis ? Khos for which tﬁ gndmg [y and I'; can be estimated using the portfolios’
weekly returns within each subperiod. Based on the estimated autocovariance matrices, the
OFP can be computed easily according to Proposition 7.

In selecting the number of basis portfolios K, we face the following trade-off: fewer port-
folios yield better sampling properties for the covariance matrix estimators, but less desirable
properties for the OFP since the predictive power of the OFP is obviously maximized when
when K'=.J. As a compromise, for the OFPs based market capitalization and market betas,
we choose K to be 10, 15, 20, and 25. For the OFP based on SIC codes, we choose 13

industry groupings, described in more detail below.

381t is important that we use value-weighted portfolios here so that the market portfolio, whose return
we wish to predict, is a portfolio of these basic portfolios (recall that the target portfolio w, that we wish
to forecast is a linear combination of the vector of returns for which I'y is the k-th order autocovariance
matrix).
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Parameter Betal0 Betal5 Beta20 Beta25 Capl0 Capl5 Cap20 Cap25 SIC13 Ry Qm log(Cap~1) VW EW TBill

January 1967 to December 1971 (261 Weeks)

Intercept 0.002 0.002 0.001 0.002 0.001 0.002 0. 002 0.001 0.001  0.172 0.746 0.001  0.001 —
t-Stat 1.330 1.360 1.150 1.430 1.240 1.520 QO 0.920 1.270  1.200 2.330 1.240  1.250 —
Slope 0.103 —-0.034 —0.153 0.171  —-0.2 \a -0.176 —0.208 0.138 0.154 0.027 0.191  0.092 —
t-Stat 1.810 —0.550 —1.890 3@‘ —0.240 —-1.070 —2.860 3.460  3.900 2.330 3.130  2.080 —
s 0.013 0.001 “G&é 014 0.005 0.000 0.005 0.031 0.045  0.056 0.021 0.037  0.016 —

/}; y 972 to December 1976 (261 Weeks)
Intercept i “ 0.001 0.001 0.001 0.001 0.001  0.103 0.389 0.001  0.001 —
0.6 0. 640

§‘ae 0.830 0.640 0.730 0.630 0.630  0.820  0.760 1.410 0.700  0.640 —

e oje 0.023 0.079 0.235 0.098 —0.169 0.069 0.040 -0.054 -0.023 0.014 —0.003  0.048 —

P ( t-Stat —2.630 0.580 1.660 0.660 —1.180 0.430 0.430 —1.430 —1.900 1.410 —0.060 0.910 —
R 000 0.005 0.026 0.001 0.011 0.002 0.005 0.001 0.001 0.008 0.014 0.008 0.000  0.003 —

January 1977 to December 1981 (261 Weeks)

Intercept 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002  0.002  0.223 0.151 0.002  0.002 —
o0 t-Stat 1.750 1.600 1.800 1.640 1.770 1.760 1.800 1.530 1.749 1.500 1.370 0.720 1.570  1.380 —
w Slope 0.007 0.071 0.065 0.033 0.075 0.003 —0.204 —0.186 0.150  0.049 0.013 0.005 0.069  0.080 —
t-Stat 0.040 0.870 0.460 0.510 0.230 0.010 —-0.850 —0.990 1.130 1.810  1.760 0.710 1.110  1.370 —
i 0.000 0.003 0.001 0.001 0.000 0.000 0.003 0.004 0.005 0.013  0.012 0.002 0.005  0.007 —

Table 18a: Forecast of weekly market-portfolio returns by lagged weekkly returns of the beta-sorted optimal forecast portfolios (OFPs), the
market-capitalization-sorted OFP’s; the SIC-sorted OFP, the return and dollar return on the hedging portfolio, minus log-market-capitalization,
the lagged returns on the CRSP value- and equal-weighted portfolios, and lagged constant-maturity (three-month) Treasury bill rates from 1962 to
1981 in five-year subperiods. The value of ¢ is 1.25 for the return Ry and 1.5 for the dollar return @@z on the hedging portfolio, respectively.



Model Statistic Aot A1t Aot R™ (%)

January 1972 to December 1976 (261 Weeks)

Ryt = Yot + 1168 + €y Mean: 0.002  0.000 10.0
S.D.: 0015  0.021 10.9
t-Stat:  1.639  0.348

Ryt = Yot + B + 72085 + ey Mean: 0.004 —0.002 —0.002 143

(¢ = 1.25) S.D.: 0.035 0035 0037 109
t-Stat: 2,040 —1.047 —0.820

Ryt = Yot + B + 7208792 + ¢,y Mean: 0.004 —0.002 —0.104 155

(¢ = 1.50) S.D.: 0032 0034 3797 109
t-Stat: 2162 —1.081  —0.442

Ryt = Yot + 1B +72e5MP 4 €,y Mean: 0.001  0.000  0.063 121
SD.: 0014 0024 1142 108

t-Stat: 1.424 0.217 0.898

January 1977 to December 1981 (261 Weeks)
Ryt = Yot + 1168 + €t Mean:  0.001  0.003 11.7
SD.: 0.011  0.022 \XK
t-Stat: 1.1 2.
A A Sta 66 566 GQ .
Ryt = Yor + 71eBY + 9280 % + ¢y Mean: 0 003 W : 13.1

(¢ = 4.75) s D 0051 124

(fb = 4.25) 020 6.104 12.2

—3.712

Rye = vor + ’Yltﬂ + 72% —1.564 12.5
% (j § —0.754  —4.140

e\L\mﬁM é@ can:  0.001 0000 0299  14.9

SD.: 0.011 0017 1088 134
t-Stat: 2251 —0.164  4.433

Ryt = Yot + 11t + 72697 + €, Mean:  0.003  0.001  0.001 141
S.D.: 0.018 0023 0036 116
t-Stat: 2735  0.843  0.632

Table 20a: Cross-sectional regression tests of various linear factor models along the lines of Fama and
MacBeth (1973) using weekly returns for NYSE and AMEX stocks from 1962 to 1996, five-year subperiods for
the portfolio-formation, estimation, and testing periods, and 100 portfolios in the cross-sectional regressions
each week. The five linear-factor models are: the standard CAPM (ﬂM ), and four two-factor models in
which the first factor is the market beta and the second factors are, respectlvely, the hedging portfolio return
beta (BHR) the hedging portfolio dollar-return beta (BHQ) the beta of a small-minus-big cap portfolio
6SM B)

return ( . , and the beta of the optimal forecast portfolio based on a set of 25 market-beta-sorted basis

portfolios (BT?FP).
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