
TUTORIALS POINT	

Simply	
 Easy	
 Learning	

ABOUT THE TUTORIAL

Java Tutorial
Java is a high-level programming language originally developed by Sun Microsystems and released in
1995. Java runs on a variety of platforms, such as Windows, Mac OS, and the various versions of UNIX.
This tutorial gives a complete understanding ofJava.

This reference will take you through simple and practical approach while learning Java Programming
language.

Audience
This reference has been prepared for the beginners to help them understand the basic to advanced
concepts related to Java Programming language.

Prerequisites
Before you start doing practice with various types of examples given in this reference, I'm making an
assumption that you are already aware about what is a computer program and what is a computer
programming language?

Copyright & Disclaimer Notice
©All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from
tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at webmaster@tutorialspoint.com

Preview from Notesale.co.uk

Page 3 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Example: .. 44	

Access Control and Inheritance: .. 44	

2. Non Access Modifiers ... 44	

Access Control Modifiers: ... 45	

Non Access Modifiers: .. 45	

Access Control Modifiers: ... 45	

Non Access Modifiers: .. 45	

What is Next? ... 46	

Java Basic Operators ... 47	

The Arithmetic Operators: .. 47	

The Relational Operators: .. 48	

Example ... 49	

The Bitwise Operators: ... 49	

Example ... 50	

The Logical Operators: ... 51	

Example ... 51	

The Assignment Operators: ... 51	

Example: .. 52	

Misc Operators ... 53	

Conditional Operator (?:): ... 53	

instanceof Operator: ... 54	

Precedence of Java Operators: .. 54	

What is Next? ... 55	

Java Loop Control .. 56	

The while Loop: .. 56	

Syntax: ... 56	

Example: .. 56	

The do...while Loop: ... 57	

Syntax: ... 57	

Example: .. 57	

The for Loop: .. 58	

Syntax: ... 58	

Example: .. 58	

Enhanced for loop in Java: ... 59	

Syntax: ... 59	

Example: .. 59	

The break Keyword: ... 59	

Syntax: ... 60	

Example: .. 60	

Preview from Notesale.co.uk

Page 6 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Java Interfaces ... 230	

Declaring Interfaces: .. 231	

Example: .. 231	

Example: .. 231	

Implementing Interfaces: .. 231	

Extending Interfaces: .. 232	

Extending Multiple Interfaces: .. 233	

Tagging Interfaces: ... 233	

Java Packages ... 234	

Creating a package: ... 234	

Example: .. 234	

The import Keyword: .. 235	

Example: .. 235	

The Directory Structure of Packages: .. 236	

Set CLASSPATH System Variable: ... 237	

Java Data Structures ... 239	

The Enumeration: ... 239	

Example: .. 240	

The BitSet ... 240	

Example: .. 242	

The Vector .. 243	

Example: .. 246	

The Stack ... 247	

Example: .. 248	

The Dictionary .. 249	

Map Interface ... 249	

Example: .. 250	

The Hashtable .. 251	

Example: .. 252	

The Properties .. 253	

Example: .. 254	

Java Collections ... 256	

The Collection Interfaces: ... 256	

The Collection Classes: .. 257	

The Collection Algorithms: ... 258	

How to use an Iterator? .. 259	

Using Java Iterator ... 259	

The Methods Declared by Iterator: ... 259	

The Methods Declared by ListIterator: ... 260	

Preview from Notesale.co.uk

Page 13 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

• Multithreaded: With Java's multithreaded feature, it is possible to write programs that can do many tasks
simultaneously. This design feature allows developers to construct smoothly running interactive
applications.

• Interpreted:Java byte code is translated on the fly to native machine instructions and is not stored
anywhere. The development process is more rapid and analytical since the linking is an incremental and
lightweight process.

• High Performance: With the use of Just-In-Time compilers, Java enables high performance.

• Distributed:Java is designed for the distributed environment of the internet.

• Dynamic: Java is considered to be more dynamic than C or C++ since it is designed to adapt to an
evolving environment. Java programs can carry extensive amount of run-time information that can be
used to verify and resolve accesses to objects on run-time.

History	
 of	
 Java:	

James Gosling initiated the Java language project in June 1991 for use in one of his many set-top box projects.
The language, initially called Oak after an oak tree that stood outside Gosling's office, also went by the name
Green and ended up later being renamed as Java, from a list of random words.

Sun released the first public implementation as Java 1.0 in 1995. It promised Write Once, Run
Anywhere (WORA), providing no-cost run-times on popular platforms.

On 13 November 2006, Sun released much of Java as free and open source software under the terms of the GNU
General Public License (GPL).

On 8 May 2007, Sun finished the process, making all of Java's core code free and open-source, aside from a small
portion of code to which Sun did not hold the copyright.

Tools	
 you	
 will	
 need:	

For performing the examples discussed in this tutorial, you will need a Pentium 200-MHz computer with a minimum
of 64 MB of RAM (128 MB of RAM recommended).

You also will need the following softwares:

• Linux 7.1 or Windows 95/98/2000/XP operating system.

• Java JDK 5

• Microsoft Notepad or any other text editor

This tutorial will provide the necessary skills to create GUI, networking, and Web applications using Java.

What	
 is	
 Next?	

Next chapter will guide you to where you can obtain Java and its documentation. Finally, it instructs you on how to
install Java and prepare an environment to develop Java applications.

Preview from Notesale.co.uk

Page 17 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Popular	
 Java	
 Editors:	

To write your Java programs, you will need a text editor. There are even more sophisticated IDEs available in the
market. But for now, you can consider one of the following:

• Notepad: On Windows machine, you can use any simple text editor like Notepad (Recommended for this
tutorial), TextPad.

• Netbeans:Is a Java IDE that is open-source and free which can be downloaded
fromhttp://www.netbeans.org/index.html.

• Eclipse: Is also a Java IDE developed by the eclipse open-source community and can be downloaded
from http://www.eclipse.org/.

What	
 is	
 Next?	

Next chapter will teach you how to write and run your first Java program and some of the important basic syntaxes
in Java needed for developing applications.

Preview from Notesale.co.uk

Page 19 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Classes	
 in	
 Java:	

A class is a blue print from which individual objects are created.

A sample of a class is given below:

public class Dog{
String breed;
int age;
String color;

void barking(){
}

void hungry(){
}

void sleeping(){
}
}

A class can contain any of the following variable types.

• Local variables: Variables defined inside methods, constructors or blocks are called local variables. The
variable will be declared and initialized within the method and the variable will be destroyed when the method
has completed.

• Instance variables: Instance variables are variables within a class but outside any method. These variables
are instantiated when the class is loaded. Instance variables can be accessed from inside any method,
constructor or blocks of that particular class.

• Class variables: Class variables are variables declared within a class, outside any method, with the static
keyword.

A class can have any number of methods to access the value of various kinds of methods. In the above example,
barking(), hungry() and sleeping() are methods.

Below mentioned are some of the important topics that need to be discussed when looking into classes of the Java
Language.

Constructors:	

When discussing about classes, one of the most important subtopic would be constructors. Every class has a
constructor. If we do not explicitly write a constructor for a class the Java compiler builds a default constructor for
that class.

Each time a new object is created, at least one constructor will be invoked. The main rule of constructors is that they
should have the same name as the class. A class can have more than one constructor.

Example of a constructor is given below:

public class Puppy{
public Puppy(){
}

public Puppy(String name){
// This constructor has one parameter, name.
}
}

Preview from Notesale.co.uk

Page 26 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Java Basic Data Types

Variables are nothing but reserved memory locations to store values. This means that when you create a

variable you reserve some space in memory.

Based on the data type of a variable, the operating system allocates memory and decides what can be stored in
the reserved memory. Therefore, by assigning different data types to variables, you can store integers, decimals,
or characters in these variables.

There are two data types available in Java:

• Primitive Data Types

• Reference/Object Data Types

Primitive	
 Data	
 Types:	

There are eight primitive data types supported by Java. Primitive data types are predefined by the language and
named by a keyword. Let us now look into detail about the eight primitive data types.

byte:	

• Byte data type is an 8-bit signed two's complement integer.

• Minimum value is -128 (-2^7)

• Maximum value is 127 (inclusive)(2^7 -1)

• Default value is 0

• Byte data type is used to save space in large arrays, mainly in place of integers, since a byte is four times
smaller than an int.

• Example: byte a = 100, byte b = -50

short:	

• Short data type is a 16-bit signed two's complement integer.

CHAPTER

5

Preview from Notesale.co.uk

Page 33 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

• Minimum value is -32,768 (-2^15)

• Maximum value is 32,767(inclusive) (2^15 -1)

• Short data type can also be used to save memory as byte data type. A short is 2 times smaller than an int

• Default value is 0.

• Example: short s= 10000, short r = -20000

int:	

• int data type is a 32-bit signed two's complement integer.

• Minimum value is - 2,147,483,648.(-2^31)

• Maximum value is 2,147,483,647(inclusive).(2^31 -1)

• Int is generally used as the default data type for integral values unless there is a concern about memory.

• The default value is 0.

• Example: int a = 100000, int b = -200000

long:	

• Long data type is a 64-bit signed two's complement integer.

• Minimum value is -9,223,372,036,854,775,808.(-2^63)

• Maximum value is 9,223,372,036,854,775,807 (inclusive). (2^63 -1)

• This type is used when a wider range than int is needed.

• Default value is 0L.

• Example: int a = 100000L, int b = -200000L

float:	

• Float data type is a single-precision 32-bit IEEE 754 floating point.

• Float is mainly used to save memory in large arrays of floating point numbers.

• Default value is 0.0f.

• Float data type is never used for precise values such as currency.

• Example: float f1 = 234.5f

Preview from Notesale.co.uk

Page 34 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

double:	

• double data type is a double-precision 64-bit IEEE 754 floating point.

• This data type is generally used as the default data type for decimal values, generally the default choice.

• Double data type should never be used for precise values such as currency.

• Default value is 0.0d.

• Example: double d1 = 123.4

boolean:	

• boolean data type represents one bit of information.

• There are only two possible values: true and false.

• This data type is used for simple flags that track true/false conditions.

• Default value is false.

• Example: boolean one = true

char:	

• char data type is a single 16-bit Unicode character.

• Minimum value is '\u0000' (or 0).

• Maximum value is '\uffff' (or 65,535 inclusive).

• Char data type is used to store any character.

• Example: char letterA ='A'

Reference	
 Data	
 Types:	

• Reference variables are created using defined constructors of the classes. They are used to access objects.

These variables are declared to be of a specific type that cannot be changed. For example, Employee, Puppy,
etc.

• Class objects and various types of array variables come under reference data type.

• Default value of any reference variable is null.

• A reference variable can be used to refer to any object of the declared type or any compatible type.

• Example: Animal animal = new Animal("giraffe");

Preview from Notesale.co.uk

Page 35 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

• Local variables are visible only within the declared method, constructor or block.

• Local variables are implemented at stack level internally.

• There is no default value for local variables so local variables should be declared and an initial value should be
assigned before the first use.

Example:	

Here, age is a local variable. This is defined inside pupAge() method and its scope is limited to this method only.

public class Test{
 public void pupAge(){
 int age = 0;
 age = age + 7;
 System.out.println("Puppy age is : " + age);
 }

 public static void main(String args[]){
 Test test = new Test();
 test.pupAge();
 }
}

This would produce the following result:

Puppy age is: 7

Example:	

Following example uses age without initializing it, so it would give an error at the time of compilation.

public class Test{
 public void pupAge(){
 int age;
 age = age + 7;
 System.out.println("Puppy age is : " + age);
 }

 public static void main(String args[]){
 Test test = new Test();
 test.pupAge();
 }
}

This would produce the following error while compiling it:

Test.java:4:variable number might not have been initialized
age = age + 7;
 ^
1 error

Instance	
 variables:	

• Instance variables are declared in a class, but outside a method, constructor or any block.

Preview from Notesale.co.uk

Page 39 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Java Modifier Types

Modifiers arekeywords that you add to those definitions to change their meanings. The Java language

has a wide variety of modifiers, including the following:

1.	
 Java	
 Access	
 Modifiers	

Java provides a number of access modifiers to set access levels for classes, variables, methods and constructors.
The four access levels are:

• Visible to the package, the default. No modifiers are needed.

• Visible to the class only (private).

• Visible to the world (public).

• Visible to the package and all subclasses (protected).

Default	
 Access	
 Modifier	
 -­‐	
 No	
 keyword:	

Default access modifier means we do not explicitly declare an access modifier for a class, field, method, etc.

A variable or method declared without any access control modifier is available to any other class in the same
package. The fields in an interface are implicitly public static final and the methods in an interface are by default
public

Example:	

Variables and methods can be declared without any modifiers, as in the following examples:

String version ="1.5.1";

boolean processOrder(){
return true;
}

CHAPTER

7

Preview from Notesale.co.uk

Page 43 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Protected	
 Access	
 Modifier	
 -­‐	
 protected:	

Variables, methods and constructors which are declared protected in a superclass can be accessed only by the
subclasses in other package or any class within the package of the protected members' class.

The protected access modifier cannot be applied to class and interfaces. Methods, fields can be declared protected,
however methods and fields in a interface cannot be declared protected.

Protected access gives the subclass a chance to use the helper method or variable, while preventing a nonrelated
class from trying to use it.

Example:	

The following parent class uses protected access control, to allow its child class overrideopenSpeaker() method:

class AudioPlayer{
protected boolean openSpeaker(Speaker sp){
// implementation details
}
}

class StreamingAudioPlayer{
boolean openSpeaker(Speaker sp){
// implementation details
}
}

Here, if we define openSpeaker() method as private, then it would not be accessible from any other class other
than AudioPlayer. If we define it as public, then it would become accessible to all the outside world. But our
intension is to expose this method to its subclass only, thats why we usedprotected modifier.

Access	
 Control	
 and	
 Inheritance:	

The following rules for inherited methods are enforced:

• Methods declared public in a superclass also must be public in all subclasses.

• Methods declared protected in a superclass must either be protected or public in subclasses; they cannot be
private.

• Methods declared without access control (no modifier was used) can be declared more private in subclasses.

• Methods declared private are not inherited at all, so there is no rule for them.

2.	
 Non	
 Access	
 Modifiers	

To use a modifier, you include its keyword in the definition of a class, method, or variable. The modifier precedes the
rest of the statement, as in the following examples (Italic ones):

public class className {
// ...
}
private boolean myFlag;
static final double weeks =9.5;
protected static final int BOXWIDTH =42;
public static void main(String[] arguments){

Preview from Notesale.co.uk

Page 45 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Java Basic Operators

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the

following groups:

• Arithmetic Operators

• Relational Operators

• Bitwise Operators

• Logical Operators

• Assignment Operators

• Misc Operators

The	
 Arithmetic	
 Operators:	

Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The
following table lists the arithmetic operators:

Assume integer variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Addition - Adds values on either side of the operator A + B will give 30

- Subtraction - Subtracts right hand operand from left hand operand A - B will give -10

* Multiplication - Multiplies values on either side of the operator A * B will give 200

/ Division - Divides left hand operand by right hand operand B / A will give 2

% Modulus - Divides left hand operand by right hand operand and returns
remainder B % A will give 0

++ Increment - Increases the value of operand by 1 B++ gives 21

-- Decrement - Decreases the value of operand by 1 B-- gives 19

CHAPTER

8

Preview from Notesale.co.uk

Page 48 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Example	

The following simple example program demonstrates the arithmetic operators. Copy and paste the following Java
program in Test.java file and compile and run this program:

public class Test{

public static void main(String args[]){
int a =10;
int b =20;
int c =25;
int d =25;
System.out.println("a + b = "+(a + b));
System.out.println("a - b = "+(a - b));
System.out.println("a * b = "+(a * b));
System.out.println("b / a = "+(b / a));
System.out.println("b % a = "+(b % a));
System.out.println("c % a = "+(c % a));
System.out.println("a++ = "+(a++));
System.out.println("b-- = "+(a--));
// Check the difference in d++ and ++d
System.out.println("d++ = "+(d++));
System.out.println("++d = "+(++d));
}
}

This would produce the following result:

a + b =30
a - b =-10
a * b =200
b / a =2
b % a =0
c % a =5
a++=10
b--=11
d++=25
++d =27

The	
 Relational	
 Operators:	

There are following relational operators supported by Java language:

Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

== Checks if the values of two operands are equal or not, if yes then
condition becomes true. (A == B) is not true.

!= Checks if the values of two operands are equal or not, if values are not
equal then condition becomes true. (A != B) is true.

> Checks if the value of left operand is greater than the value of right
operand, if yes then condition becomes true. (A > B) is not true.

< Checks if the value of left operand is less than the value of right
operand, if yes then condition becomes true. (A < B) is true.

>= Checks if the value of left operand is greater than or equal to the value (A >= B) is not true.

Preview from Notesale.co.uk

Page 49 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Here, operators with the highest precedence appear at the top of the table, those with the lowest appear at the
bottom. Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

Postfix () [] . (dot operator) Left to right

Unary ++ - - ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >>>>><< Left to right

Relational >>= <<= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

What	
 is	
 Next?	

Next chapter would explain about loop control in Java programming. The chapter will describe various types of loops
and how these loops can be used in Java program development and for what purposes they are being used.

Preview from Notesale.co.uk

Page 56 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

double radians =Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n",Math.PI);
System.out.format("The sine of %.1f degrees is
%.4f%n",degrees,Math.sin(radians));

}
}

This produces the following result:

The value of pi is 3.1416
The sine of 45.0 degrees is 0.7071

cos()	

Description:	

The method returns the cosine of the specified double value.

Syntax:	

double cos(double d)

Parameters:	

Here is the detail of parameters:

• d -- A double data types

Return	
 Value:	

• This method Returns the cosine of the specified double value.

Example:	

public class Test{

public static void main(String args[]){
double degrees =45.0;
double radians =Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n",Math.PI);
System.out.format("The cosine of %.1f degrees is %.4f%n",
 degrees,Math.cos(radians));

}
}

This produces the following result:

Preview from Notesale.co.uk

Page 86 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Here is the detail of parameters:

• d -- A double data types

Return	
 Value:	

• This method Returns the arccosine of the specified double value.

Example:	

public class Test{

public static void main(String args[]){
double degrees =45.0;
double radians =Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n",Math.PI);
System.out.format("The arccosine of %.4f is %.4f degrees %n",
Math.cos(radians),
Math.toDegrees(Math.acos(Math.sin(radians))));

}
}

This produces the following result:

The value of pi is 3.1416
The arccosine of 0.7071 is 45.0000 degrees

atan()	

Description:	

The method returns the arctangent of the specified double value.

Syntax:	

double atan(double d)

Parameters:	

Here is the detail of parameters:

• d -- A double data types

Return	
 Value	
 :	

• This method Returns the arctangent of the specified double value.

Preview from Notesale.co.uk

Page 89 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

• NA

Return	
 Value:	

• This method returns a double

Example:	

public class Test{

public static void main(String args[]){
System.out.println(Math.random());
System.out.println(Math.random());
}
}

This produces the following result:

0.16763945061451657
0.400551253762343

Note: Above result would vary every time you would call random() method.

What	
 is	
 Next?	

In the next section, we will be going through the Character class in Java. You will be learning how to use object
Characters and primitive data type char in Java.

Preview from Notesale.co.uk

Page 93 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

The newline character (\n) has been used frequently in this tutorial in System.out.println() statements to advance to
the next line after the string is printed.

Following table shows the Java escape sequences:

Escape Sequence Description

\t Inserts a tab in the text at this point.

\b Inserts a backspace in the text at this point.

\n Inserts a newline in the text at this point.

\r Inserts a carriage return in the text at this point.

\f Inserts a form feed in the text at this point.

\' Inserts a single quote character in the text at this point.

\" Inserts a double quote character in the text at this point.

\\ Inserts a backslash character in the text at this point.

When an escape sequence is encountered in a print statement, the compiler interprets it accordingly.

Example:	

If you want to put quotes within quotes you must use the escape sequence, \", on the interior quotes:

public class Test{

public static void main(String args[]){
System.out.println("She said \"Hello!\" to me.");
}
}

This would produce the following result:

She said "Hello!" to me.

Character	
 Methods:	

Here is the list of the important instance methods that all the subclasses of the Character class implement:

SN Methods with Description

1 isLetter()
Determines whether the specified char value is a letter.

2 isDigit()
Determines whether the specified char value is a digit.

3 isWhitespace()
Determines whether the specified char value is white space.

4 isUpperCase()
Determines whether the specified char value is uppercase.

Preview from Notesale.co.uk

Page 95 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Example:	

public class Test{

public static void main(String args[]){
System.out.println(Character.isUpperCase('c'));
System.out.println(Character.isUpperCase('C'));
System.out.println(Character.isUpperCase('\n'));
System.out.println(Character.isUpperCase('\t'));
}
}

This produces the following result:

false
true
false
false

isLowerCase()	

Description:	

The method determines whether the specified char value is lowercase.

Syntax:	

boolean isLowerCase(char ch)

Parameters:	

Here is the detail of parameters:

• ch -- Primitive character type

Return	
 Value:	

• This method Returns true if passed character is really an lowercase.

Example:	

public class Test{

public static void main(String args[]){
System.out.println(Character.isLowerCase('c'));
System.out.println(Character.isLowerCase('C'));
System.out.println(Character.isLowerCase('\n'));
System.out.println(Character.isLowerCase('\t'));
}
}

Preview from Notesale.co.uk

Page 99 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

14 void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
Copies characters from this string into the destination character array.

15 int hashCode()
Returns a hash code for this string.

16 int indexOf(int ch)
Returns the index within this string of the first occurrence of the specified character.

17
int indexOf(int ch, int fromIndex)
Returns the index within this string of the first occurrence of the specified character, starting the
search at the specified index.

18 int indexOf(String str)
Returns the index within this string of the first occurrence of the specified substring.

19
int indexOf(String str, int fromIndex)
Returns the index within this string of the first occurrence of the specified substring, starting at the
specified index.

20 String intern()
Returns a canonical representation for the string object.

21 int lastIndexOf(int ch)
Returns the index within this string of the last occurrence of the specified character.

22
int lastIndexOf(int ch, int fromIndex)
Returns the index within this string of the last occurrence of the specified character, searching
backward starting at the specified index.

23 int lastIndexOf(String str)
Returns the index within this string of the rightmost occurrence of the specified substring.

24
int lastIndexOf(String str, int fromIndex)
Returns the index within this string of the last occurrence of the specified substring, searching
backward starting at the specified index.

25 int length()
Returns the length of this string.

26 boolean matches(String regex)
Tells whether or not this string matches the given regular expression.

27 boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len)
Tests if two string regions are equal.

28 boolean regionMatches(int toffset, String other, int ooffset, int len)
Tests if two string regions are equal.

29
String replace(char oldChar, char newChar)
Returns a new string resulting from replacing all occurrences of oldChar in this string with
newChar.

30
String replaceAll(String regex, String replacement
Replaces each substring of this string that matches the given regular expression with the given
replacement.

31
String replaceFirst(String regex, String replacement)
Replaces the first substring of this string that matches the given regular expression with the given
replacement.

Preview from Notesale.co.uk

Page 106 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Str2=Str1.getBytes("ISO-8859-1");
System.out.println("Returned Value "+Str2);
}catch(UnsupportedEncodingException e){
System.out.println("Unsupported character set");
}
}
}

This produces the following result:

Returned Value [B@192d342
Returned Value [B@15ff48b
Returned Value [B@1b90b39

byte[]	
 getBytes(String	
 charsetName)	

Description:	

This method has following two forms:

• getBytes(String charsetName): Encodes this String into a sequence of bytes using the named charset,
storing the result into a new byte array.

• getBytes(): Encodes this String into a sequence of bytes using the platform's default charset, storing the
result into a new byte array.

Syntax:	

Here is the syntax of this method:

public byte[] getBytes(String charsetName)
throws UnsupportedEncodingException

or

public byte[] getBytes()

Parameters:	

Here is the detail of parameters:

• charsetName -- the name of a supported charset.

Return	
 Value:	

• This method returns the resultant byte array

Example:	

import java.io.*;

public class Test{

Preview from Notesale.co.uk

Page 118 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

• This method returns a hash code value for this object.

Example:	

import java.io.*;

public class Test{
public static void main(String args[]){
String Str=new String("Welcome to Tutorialspoint.com");
System.out.println("Hashcode for Str :"+Str.hashCode());
}
}

This produces the following result:

Hashcode for Str :1186874997

int	
 indexOf(int	
 ch)	

Description:	

This method has following different variants:

• public int indexOf(int ch): Returns the index within this string of the first occurrence of the specified
character or -1 if the character does not occur.

• public int indexOf(int ch, int fromIndex): Returns the index within this string of the first occurrence of
the specified character, starting the search at the specified index or -1 if the character does not occur.

• int indexOf(String str): Returns the index within this string of the first occurrence of the specified
substring. If it does not occur as a substring, -1 is returned.

• int indexOf(String str, int fromIndex): Returns the index within this string of the first occurrence of the
specified substring, starting at the specified index. If it does not occur, -1 is returned.

Syntax:	

Here is the syntax of this method:

public int indexOf(int ch)

or

public int indexOf(int ch,int fromIndex)

or

int indexOf(String str)

or

int indexOf(String str,int fromIndex)

Parameters:	

Here is the detail of parameters:

Preview from Notesale.co.uk

Page 121 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

public class Test{
public static void main(String args[]){
String Str=new String("Welcome to Tutorialspoint.com");

System.out.print("Return Value :");
System.out.println(Str.replace('o','T'));

System.out.print("Return Value :");
System.out.println(Str.replace('l','D'));
}
}

This produces the following result:

Return Value :WelcTme tT TutTrialspTint.cTm
Return Value :WeDcome to TutoriaDspoint.com

String	
 replaceAll(String	
 regex,	
 String	
 replacement)	

Description:	

This method replaces each substring of this string that matches the given regular expression with the given
replacement.

Syntax:	

Here is the syntax of this method:

public String replaceAll(String regex,String replacement)

Parameters:	

Here is the detail of parameters:

• regex -- the regular expression to which this string is to be matched.
• replacement -- the string which would replace found expression.

Return	
 Value:	

• This method returns the resulting String.

Example:	

import java.io.*;

public class Test{
public static void main(String args[]){
String Str=new String("Welcome to Tutorialspoint.com");

System.out.print("Return Value :");

Preview from Notesale.co.uk

Page 139 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Return	
 Value:	

• It returns the array of strings computed by splitting this string around matches of the given regular

expression.

Example:	

import java.io.*;

public class Test{
public static void main(String args[]){
String Str=new String("Welcome-to-Tutorialspoint.com");

System.out.println("Return Value :");
for(String retval:Str.split("-",2)){
System.out.println(retval);
}
System.out.println("");
System.out.println("Return Value :");
for(String retval:Str.split("-",3)){
System.out.println(retval);
}
System.out.println("");
System.out.println("Return Value :");
for(String retval:Str.split("-",0)){
System.out.println(retval);
}
System.out.println("");
System.out.println("Return Value :");
for(String retval:Str.split("-")){
System.out.println(retval);
}
}
}

This produces the following result:

Return Value :
Welcome
to-Tutorialspoint.com

Return Value :
Welcome
to
Tutorialspoint.com

Return Value:
Welcome
to
Tutorialspoint.com

Return Value :
Welcome
to
Tutorialspoint.com

Preview from Notesale.co.uk

Page 143 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Return Value :true
Return Value :false
Return Value :true

CharSequence	
 subSequence(int	
 beginIndex,	
 int	
 endIndex)	

Description:	

This method returns a new character sequence that is a subsequence of this sequence.

Syntax:	

Here is the syntax of this method:

public CharSequence subSequence(int beginIndex,int endIndex)

Parameters:	

Here is the detail of parameters:

• beginIndex -- the begin index, inclusive.
• endIndex -- the end index, exclusive.

Return	
 Value:	

• This method returns the specified subsequence.

Example:	

import java.io.*;

public class Test{
public static void main(String args[]){
String Str=new String("Welcome to Tutorialspoint.com");

System.out.print("Return Value :");
System.out.println(Str.subSequence(0,10));

System.out.print("Return Value :");
System.out.println(Str.subSequence(10,15));
}
}

This produces the following result:

Return Value :Welcome to
Return Value : Tuto

Preview from Notesale.co.uk

Page 146 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

String	
 substring(int	
 beginIndex,	
 int	
 endIndex)	

Description:	

This method has two variants and returns a new string that is a substring of this string. The substring begins
with the character at the specified index and extends to the end of this string or up to endIndex - 1 if second
argument is given.

Syntax:	

Here is the syntax of this method:

public String substring(int beginIndex)

or

public String substring(int beginIndex,int endIndex)

Parameters:	

Here is the detail of parameters:

• beginIndex -- the begin index, inclusive.
• endIndex -- the end index, exclusive.

Return	
 Value:	

• The specified substring.

Example:	

import java.io.*;

public class Test{
public static void main(String args[]){
String Str=new String("Welcome to Tutorialspoint.com");

System.out.print("Return Value :");
System.out.println(Str.substring(10));

System.out.print("Return Value :");
System.out.println(Str.substring(10,15));
}
}

This produces the following result:

Return Value : Tutorialspoint.com
Return Value : Tuto

Preview from Notesale.co.uk

Page 148 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

char[]	
 toCharArray()	

Description:	

This method converts this string to a new character array.

Syntax:	

Here is the syntax of this method:

public char[] toCharArray()

Parameters:	

Here is the detail of parameters:

• NA

Return	
 Value:	

• It returns a newly allocated character array, whose length is the length of this string and whose contents

are initialized to contain the character sequence represented by this string.

Example:	

import java.io.*;

public class Test{
public static void main(String args[]){
String Str=new String("Welcome to Tutorialspoint.com");

System.out.print("Return Value :");
System.out.println(Str.toCharArray());
}
}

This produces the following result:

Return Value :Welcome to Tutorialspoint.com

String	
 toLowerCase()	

Description:	

This method has two variants. First variant converts all of the characters in this String to lower case using the
rules of the given Locale. This is equivalent to calling toLowerCase(Locale.getDefault()).

Second variant takes locale as an argument to be used while converting into lower case.

Preview from Notesale.co.uk

Page 149 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

public static void main(String args[]){
String Str=new String("Welcome to Tutorialspoint.com");

System.out.print("Return Value :");
System.out.println(Str.toUpperCase());
}
}

This produces the following result:

Return Value :WELCOME TO TUTORIALSPOINT.COM

String	
 trim()	

Description:	

This method returns a copy of the string, with leading and trailing whitespace omitted.

Syntax:	

Here is the syntax of this method:

publicString trim()

Parameters:	

Here is the detail of parameters:

• NA

Return	
 Value:	

• It returns a copy of this string with leading and trailing white space removed, or this string if it has no

leading or trailing white space.

Example:	

import java.io.*;

public class Test{
public static void main(String args[]){
String Str=new String(" Welcome to Tutorialspoint.com ");

System.out.print("Return Value :");
System.out.println(Str.trim());
}
}

This produces the following result:

Return Value :Welcome to Tutorialspoint.com

Preview from Notesale.co.uk

Page 154 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

1 public int start()
Returns the start index of the previous match.

2 public int start(int group)
Returns the start index of the subsequence captured by the given group during the previous match operation.

3 public int end()
Returns the offset after the last character matched.

4
public int end(int group)
Returns the offset after the last character of the subsequence captured by the given group during the previous
match operation.

Study	
 Methods:	

Study methods review the input string and return a Boolean indicating whether or not the pattern is found:

SN Methods with Description

1 public boolean lookingAt()
Attempts to match the input sequence, starting at the beginning of the region, against the pattern.

2 public boolean find()
Attempts to find the next subsequence of the input sequence that matches the pattern.

3
public boolean find(int start
Resets this matcher and then attempts to find the next subsequence of the input sequence that matches the
pattern, starting at the specified index.

4 public boolean matches()
Attempts to match the entire region against the pattern.

Replacement	
 Methods:	

Replacement methods are useful methods for replacing text in an input string:

SN Methods with Description

1 public Matcher appendReplacement(StringBuffer sb, String replacement)
Implements a non-terminal append-and-replace step.

2 public StringBuffer appendTail(StringBuffer sb)
Implements a terminal append-and-replace step.

3
public String replaceAll(String replacement)
Replaces every subsequence of the input sequence that matches the pattern with the given replacement
string.

4
public String replaceFirst(String replacement)
Replaces the first subsequence of the input sequence that matches the pattern with the given replacement
string.

5
public static String quoteReplacement(String s)
Returns a literal replacement String for the specified String. This method produces a String that will work as a
literal replacement s in the appendReplacement method of the Matcher class.

Preview from Notesale.co.uk

Page 174 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

The	
 start	
 and	
 end	
 Methods:	

Following is the example that counts the number of times the word "cats" appears in the input string:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
 private static final String REGEX ="\\bcat\\b";
 private static final String INPUT ="cat cat cat cattie cat";

public static void main(String args[]){
Pattern p =Pattern.compile(REGEX);
Matcher m = p.matcher(INPUT);// get a matcher object
int count =0;

while(m.find()){
 count++;
System.out.println("Match number "+count);
System.out.println("start(): "+m.start());
System.out.println("end(): "+m.end());
}
}
}

This would produce the following result:

Match number 1
start():0
end():3
Match number 2
start():4
end():7
Match number 3
start():8
end():11
Match number 4
start():19
end():22

You can see that this example uses word boundaries to ensure that the letters "c" "a" "t" are not merely a substring
in a longer word. It also gives some useful information about where in the input string the match has occurred.

The start method returns the start index of the subsequence captured by the given group during the previous match
operation, and end returns the index of the last character matched, plus one.

The	
 matches	
 and	
 lookingAt	
 Methods:	

The matches and lookingAt methods both attempt to match an input sequence against a pattern. The difference,
however, is that matches requires the entire input sequence to be matched, while lookingAt does not.

Both methods always start at the beginning of the input string. Here is the example explaining the functionality:

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{

Preview from Notesale.co.uk

Page 175 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

You can declare a local variable with the same name multiple times in different non-nesting blocks in a method, but
you cannot declare a local variable twice in nested blocks.

Using	
 Command-­‐Line	
 Arguments:	

Sometimes you will want to pass information into a program when you run it. This is accomplished by passing
command-line arguments to main().

A command-line argument is the information that directly follows the program's name on the command line when it
is executed. To access the command-line arguments inside a Java program is quite easy.they are stored as strings
in the String array passed to main().

Example:	

The following program displays all of the command-line arguments that it is called with:

public class CommandLine{

public static void main(String args[]){
for(int i=0; i<args.length; i++){
System.out.println("args["+ i +"]: "+args[i]);
}
}
}

Try executing this program as shown here:

java CommandLine this is a command line 200-100

This would produce the following result:

args[0]:this
args[1]:is
args[2]: a
args[3]: command
args[4]: line
args[5]:200
args[6]:-100

Preview from Notesale.co.uk

Page 183 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

To add a finalizer to a class, you simply define the finalize() method. The Java runtime calls that method whenever
it is about to recycle an object of that class.

Inside the finalize() method, you will specify those actions that must be performed before an object is destroyed.

The finalize() method has this general form:

protected void finalize()
{
// finalization code here
}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined outside its class.

This means that you cannot know whenor even iffinalize() will be executed. For example, if your program ends
before garbage collection occurs, finalize() will not execute.

Preview from Notesale.co.uk

Page 186 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

This method reads the specified byte of data from the InputStream. Returns an int. Returns the next byte of
data and -1 will be returned if it's end of file.

4
public int read(byte[] r) throws IOException{}
This method reads r.length bytes from the input stream into an array. Returns the total number of bytes read.
If end of file -1 will be returned.

5 public int available() throws IOException{}
Gives the number of bytes that can be read from this file input stream. Returns an int.

There are other important input streams available, for more detail you can refer to the following links:

• ByteArrayInputStream
• DataInputStream

ByteArrayInputStream	

The ByteArrayInputStream class allows a buffer in the memory to be used as an InputStream. The input source is a
byte array. There are following forms of constructors to create ByteArrayInputStream objects

Takes a byte array as the parameter:

ByteArrayInputStream bArray = new ByteArrayInputStream(byte [] a);

Another form takes an array of bytes, and two ints, where off is the first byte to be read and len is the number of
bytes to be read.

ByteArrayInputStream bArray = new ByteArrayInputStream(byte []a,
 int off,
 int len)

Once you have ByteArrayInputStream object in hand then there is a list of helper methods which can be used to
read the stream or to do other operations on the stream.

SN Methods with Description

1
public int read()
This method reads the next byte of data from the InputStream. Returns an int as the next byte of
data. If it is end of file then it returns -1.

2
public int read(byte[] r, int off, int len)
This method reads upto len number of bytes starting from off from the input stream into an array.
Returns the total number of bytes read. If end of file -1 will be returned.

3
public int available()
Gives the number of bytes that can be read from this file input stream. Returns an int that gives the
number of bytes to be read.

4
public void mark(int read)
This sets the current marked position in the stream. The parameter gives the maximum limit of
bytes that can be read before the marked position becomes invalid.

5 public long skip(long n)
Skips n number of bytes from the stream. This returns the actual number of bytes skipped.

Example:	

Following is the example to demonstrate ByteArrayInputStream and ByteArrayOutputStream

Preview from Notesale.co.uk

Page 191 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

SN Methods with Description

1
public void reset()
This method resets the number of valid bytes of the byte array output stream to zero, so all the accumulated
output in the stream will be discarded.

2

public byte[] toByteArray()
This method creates a newly allocated Byte array. Its size would be the current size of the output stream and
the contents of the buffer will be copied into it. Returns the current contents of the output stream as a byte
array.

3
public String toString()
Converts the buffer content into a string. Translation will be done according to the default character encoding.
Returns the String translated from the buffer's content.

4 public void write(int w)
Writes the specified array to the output stream.

5 public void write(byte []b, int of, int len)
Writes len number of bytes starting from offset off to the stream.

6 public void writeTo(OutputStream outSt)
Writes the entire content of this Stream to the specified stream argument.

Example:	

Following is the example to demonstrate ByteArrayOutputStream and ByteArrayOutputStream

import java.io.*;

public class ByteStreamTest {

 public static void main(String args[])throws IOException {

 ByteArrayOutputStream bOutput = new ByteArrayOutputStream(12);

 while(bOutput.size()!= 10) {
 // Gets the inputs from the user
 bOutput.write(System.in.read());
 }

 byte b [] = bOutput.toByteArray();
 System.out.println("Print the content");
 for(int x= 0 ; x < b.length; x++) {
 //printing the characters
 System.out.print((char)b[x] + " ");
 }
 System.out.println(" ");

 int c;

 ByteArrayOutputStream bInput = new ByteArrayOutputStream(b);

 System.out.println("Converting characters to Upper case ");
 for(int y = 0 ; y < 1; y++) {
 while((c= bInput.read())!= -1) {
 System.out.println(Character.toUpperCase((char)c));
 }
 bInput.reset();
 }

Preview from Notesale.co.uk

Page 195 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

+" with salary "+ salary);
}
public double getSalary()
{
return salary;
}
public void setSalary(double newSalary)
{
if(newSalary >=0.0)
{
 salary = newSalary;
}
}
public double computePay()
{
System.out.println("Computing salary pay for "+ getName());
return salary/52;
}
}

Here, we cannot instantiate a new Employee, but if we instantiate a new Salary object, the Salary object will inherit
the three fields and seven methods from Employee.

/* File name : AbstractDemo.java */
public class AbstractDemo
{
public static void main(String[] args)
{
Salary s =new Salary("Mohd Mohtashim","Ambehta, UP",
3,3600.00);
Employee e =new Salary("John Adams","Boston, MA",
2,2400.00);

System.out.println("Call mailCheck using Salary reference --");
 s.mailCheck();
System.out.println("\n Call mailCheck usingEmployee reference--");
 e.mailCheck();
}
}

This would produce the following result:

Constructing an Employee
Constructing an Employee
Call mailCheck using Salary reference --
Within mailCheck of Salary class
Mailing check to MohdMohtashim with salary 3600.0

Call mailCheck using Employee reference--
Within mailCheck of Salary class
Mailing check to JohnAdams with salary 2400.

Abstract	
 Methods:	

If you want a class to contain a particular method but you want the actual implementation of that method to be
determined by child classes, you can declare the method in the parent class as abstract.

The abstract keyword is also used to declare a method as abstract. An abstract method consists of a method
signature, but no method body.

Preview from Notesale.co.uk

Page 227 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

public static void main(String[] args){
Map m1 =new HashMap();
 m1.put("Zara","8");
 m1.put("Mahnaz","31");
 m1.put("Ayan","12");
 m1.put("Daisy","14");
System.out.println();
System.out.println(" Map Elements");
System.out.print("\t"+ m1);
}
}

This would produce the following result:

MapElements
{Mahnaz=31,Ayan=12,Daisy=14,Zara=8}

The	
 Hashtable	

The Hashtable class provides a means of organizing data based on some user-defined key structure.

For example, in an address list hash table you could store and sort data based on a key such as ZIP code rather
than on a person's name.

The specific meaning of keys in regard to hashtables is totally dependent on the usage of the hashtable and the
data it contains.

Hashtable was part of the original java.util and is a concrete implementation of a Dictionary.

However, Java 2 reengineered Hashtable so that it also implements the Map interface. Thus, Hashtable is now
integrated into the collections framework. It is similar to HashMap, but is synchronized.

Like HashMap, Hashtable stores key/value pairs in a hashtable. When using a Hashtable, you specify an object that
is used as a key, and the value that you want linked to that key. The key is then hashed, and the resulting hash
code is used as the index at which the value is stored within the table.

The Hashtable defines four constructors. The first version is the default constructor:

Hashtable()

The second version creates a hashtable that has an initial size specified by size:

Hashtable(int size)

The third version creates a hashtable that has an initial size specified by size and a fill ratio specified by fillRatio.

This ratio must be between 0.0 and 1.0, and it determines how full the hashtable can be before it is resized upward.

Hashtable(int size,float fillRatio)

The fourth version creates a hashtable that is initialized with the elements in m.

The capacity of the hashtable is set to twice the number of elements in m. The default load factor of 0.75 is used.

Hashtable(Map m)

Apart from the methods defined by Map interface, Hashtable defines the following methods:

Preview from Notesale.co.uk

Page 252 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

System.out.println();

// look for state not in list -- specify default
 str = capitals.getProperty("Florida","Not Found");
System.out.println("The capital of Florida is "+ str +".");
}
}

This would produce the following result:

The capital of Missouri is JeffersonCity.
The capital of Illinois is Springfield.
The capital of Indiana is Indianapolis.
The capital of California is Sacramento.
The capital of Washington is Olympia.

The capital of Florida is NotFound.

Preview from Notesale.co.uk

Page 256 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

9 TreeSet
Implements a set stored in a tree. Extends AbstractSet.

10 AbstractMap
Implements most of the Map interface.

11 HashMap
Extends AbstractMap to use a hash table.

12 TreeMap
Extends AbstractMap to use a tree.

13 WeakHashMap
Extends AbstractMap to use a hash table with weak keys.

14 LinkedHashMap
Extends HashMap to allow insertion-order iterations.

15 IdentityHashMap
Extends AbstractMap and uses reference equality when comparing documents.

The AbstractCollection, AbstractSet, AbstractList, AbstractSequentialList and AbstractMap classes provide skeletal
implementations of the core collection interfaces, to minimize the effort required to implement them.

The following legacy classes defined by java.util have been discussed in previous tutorial:

SN Classes with Description

1 Vector
This implements a dynamic array. It is similar to ArrayList, but with some differences.

2 Stack
Stack is a subclass of Vector that implements a standard last-in, first-out stack.

3
Dictionary
Dictionary is an abstract class that represents a key/value storage repository and operates much
like Map.

4 Hashtable
Hashtable was part of the original java.util and is a concrete implementation of a Dictionary.

5
Properties
Properties is a subclass of Hashtable. It is used to maintain lists of values in which the key is a
String and the value is also a String.

6
BitSet
A BitSet class creates a special type of array that holds bit values. This array can increase in size
as needed.

The	
 Collection	
 Algorithms:	

The collections framework defines several algorithms that can be applied to collections and maps. These algorithms
are defined as static methods within the Collections class.

Several of the methods can throw a ClassCastException, which occurs when an attempt is made to compare
incompatible types, or an UnsupportedOperationException, which occurs when an attempt is made to modify an
unmodifiable collection.

Collections define three static variables: EMPTY_SET, EMPTY_LIST, and EMPTY_MAP. All are immutable.

Preview from Notesale.co.uk

Page 259 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Returns the next element. Throws NoSuchElementException if there is not a next element.

3
void remove()
Removes the current element. Throws IllegalStateException if an attempt is made to call remove() that is not
preceded by a call to next().

The	
 Methods	
 Declared	
 by	
 ListIterator:	

SN Methods with Description

1 void add(Object obj)
Inserts obj into the list in front of the element that will be returned by the next call to next().

2 boolean hasNext()
Returns true if there is a next element. Otherwise, returns false.

3 boolean hasPrevious()
Returns true if there is a previous element. Otherwise, returns false.

4 Object next()
Returns the next element. A NoSuchElementException is thrown if there is not a next element.

5 int nextIndex()
Returns the index of the next element. If there is not a next element, returns the size of the list.

6 Object previous()
Returns the previous element. A NoSuchElementException is thrown if there is not a previous element.

7 int previousIndex()
Returns the index of the previous element. If there is not a previous element, returns -1.

8
void remove()
Removes the current element from the list. An IllegalStateException is thrown if remove() is called before
next() or previous() is invoked.

9 void set(Object obj)
Assigns obj to the current element. This is the element last returned by a call to either next() or previous().

Example:	

Here is an example demonstrating both Iterator and ListIterator. It uses an ArrayList object, but the general
principles apply to any type of collection.

Of course, ListIterator is available only to those collections that implement the List interface.

import java.util.*;

public class IteratorDemo {

 public static void main(String args[]) {
 // Create an array list
 ArrayList al = new ArrayList();
 // add elements to the array list
 al.add("C");
 al.add("A");
 al.add("E");
 al.add("B");
 al.add("D");

Preview from Notesale.co.uk

Page 261 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Java Serialization

Java provides a mechanism, called object serialization where an object can be represented as a sequence of

bytes that includes the object's data as well as information about the object's type and the types of data stored in the
object.

After a serialized object has been written into a file, it can be read from the file and deserialized that is, the type
information and bytes that represent the object and its data can be used to recreate the object in memory.

Most impressive is that the entire process is JVM independent, meaning an object can be serialized on one platform
and deserialized on an entirely different platform.

Classes ObjectInputStream and ObjectOutputStream are high-level streams that contain the methods for
serializing and deserializing an object.

The ObjectOutputStream class contains many write methods for writing various data types, but one method in
particular stands out:

public final void writeObject(Object x)throws IOException

The above method serializes an Object and sends it to the output stream. Similarly, the ObjectInputStream class
contains the following method for deserializing an object:

public final Object readObject()throws IOException,
ClassNotFoundException

This method retrieves the next Object out of the stream and deserializes it. The return value is Object, so you will
need to cast it to its appropriate data type.

To demonstrate how serialization works in Java, I am going to use the Employee class that we discussed early on in
the book. Suppose that we have the following Employee class, which implements the Serializable interface:

public class Employeeimplements java.io.Serializable
{
public String name;
public String address;
public transient int SSN;
public int number;
public void mailCheck()
{
System.out.println("Mailing a check to "+ name+" "+ address);
}

CHAPTER

30

Preview from Notesale.co.uk

Page 269 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Java Networking

The term network programming refers to writing programs that execute across multiple devices (computers),

in which the devices are all connected to each other using a network.

The java.net package of the J2SE APIs contains a collection of classes and interfaces that provide the low-level
communication details, allowing you to write programs that focus on solving the problem at hand.

The java.net package provides support for the two common network protocols:

• TCP: TCP stands for Transmission Control Protocol, which allows for reliable communication between two
applications. TCP is typically used over the Internet Protocol, which is referred to as TCP/IP.

• UDP: UDP stands for User Datagram Protocol, a connection-less protocol that allows for packets of data to be
transmitted between applications.

This tutorial gives good understanding on the following two subjects:

• Socket Programming: This is most widely used concept in Networking and it has been explained in very
detail.

• URL Processing: This would be covered separately. Click here to learn about URL Processing in Java
language.

Url	
 Processing	

URL stands for Uniform Resource Locator and represents a resource on the World Wide Web, such as a Web page
or FTP directory.

This section shows you how to write Java programs that communicate with a URL. A URL can be broken down into
parts, as follows:

protocol://host:port/path?query#ref

Examples of protocols include HTTP, HTTPS, FTP, and File. The path is also referred to as the filename, and the
host is also called the authority.

The following is a URL to a Web page whose protocol is HTTP:

http://www.amrood.com/index.htm?language=en#j2se

Notice that this URL does not specify a port, in which case the default port for the protocol is used. With HTTP, the
default port is 80.

CHAPTER

31

Preview from Notesale.co.uk

Page 272 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

URL	
 Class	
 Methods:	

The java.net.URL class represents a URL and has complete set of methods to manipulate URL in Java.

The URL class has several constructors for creating URLs, including the following:

SN Methods with Description

1
public URL(String protocol, String host, int port, String file) throws
MalformedURLException.
Creates a URL by putting together the given parts.

2 public URL(String protocol, String host, String file) throws MalformedURLException
Identical to the previous constructor, except that the default port for the given protocol is used.

3 public URL(String url) throws MalformedURLException
Creates a URL from the given String

4 public URL(URL context, String url) throws MalformedURLException
Creates a URL by parsing the together the URL and String arguments

The URL class contains many methods for accessing the various parts of the URL being represented.

Some of the methods in the URL class include the following:

SN Methods with Description

1 public String getPath()
Returns the path of the URL.

2 public String getQuery()
Returns the query part of the URL.

3 public String getAuthority()
Returns the authority of the URL.

4 public int getPort()
Returns the port of the URL.

5 public int getDefaultPort()
Returns the default port for the protocol of the URL.

6 public String getProtocol()
Returns the protocol of the URL.

7 public String getHost()
Returns the host of the URL.

8 public String getHost()
Returns the host of the URL.

9 public String getFile()
Returns the filename of the URL.

10 public String getRef()
Returns the reference part of the URL.

11 public URLConnection openConnection() throws IOException
Opens a connection to the URL, allowing a client to communicate with the resource.

Preview from Notesale.co.uk

Page 273 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

{
public static void main(String[] args)
{
try
{
URL url =new URL(args[0]);
URLConnection urlConnection = url.openConnection();
HttpURLConnection connection =null;
if(urlConnection instanceof HttpURLConnection)
{
 connection =(HttpURLConnection) urlConnection;
}
else
{
System.out.println("Please enter an HTTP URL.");
return;
}
BufferedReader in=new BufferedReader(
new InputStreamReader(connection.getInputStream()));
String urlString ="";
String current;
while((current =in.readLine())!=null)
{
urlString += current;
}
System.out.println(urlString);
}catch(IOException e)
{
 e.printStackTrace();
}
}
}

A sample run of the thid program would produce the following result:

$ java URLConnDemo http://www.amrood.com

.....a complete HTML content of home page of amrood.com.....

Socket	
 Programming:	

Sockets provide the communication mechanism between two computers using TCP. A client program creates a
socket on its end of the communication and attempts to connect that socket to a server.

When the connection is made, the server creates a socket object on its end of the communication. The client and
server can now communicate by writing to and reading from the socket.

The java.net.Socket class represents a socket, and the java.net.ServerSocket class provides a mechanism for the
server program to listen for clients and establish connections with them.

The following steps occur when establishing a TCP connection between two computers using sockets:

• The server instantiates a ServerSocket object, denoting which port number communication is to occur on.

• The server invokes the accept() method of the ServerSocket class. This method waits until a client connects to
the server on the given port.

Preview from Notesale.co.uk

Page 276 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

• After the server is waiting, a client instantiates a Socket object, specifying the server name and port number to
connect to.

• The constructor of the Socket class attempts to connect the client to the specified server and port number. If
communication is established, the client now has a Socket object capable of communicating with the server.

• On the server side, the accept() method returns a reference to a new socket on the server that is connected to
the client's socket.

After the connections are established, communication can occur using I/O streams. Each socket has both an
OutputStream and an InputStream. The client's OutputStream is connected to the server's InputStream, and the
client's InputStream is connected to the server's OutputStream.

TCP is a twoway communication protocol, so data can be sent across both streams at the same time. There are
following usefull classes providing complete set of methods to implement sockets.

ServerSocket	
 Class	
 Methods:	

The java.net.ServerSocket class is used by server applications to obtain a port and listen for client requests

The ServerSocket class has four constructors:

SN Methods with Description

1
public ServerSocket(int port) throws IOException
Attempts to create a server socket bound to the specified port. An exception occurs if the port is
already bound by another application.

2
public ServerSocket(int port, int backlog) throws IOException
Similar to the previous constructor, the backlog parameter specifies how many incoming clients to
store in a wait queue.

3

public ServerSocket(int port, int backlog, InetAddress address) throws IOException
Similar to the previous constructor, the InetAddress parameter specifies the local IP address to
bind to. The InetAddress is used for servers that may have multiple IP addresses, allowing the
server to specify which of its IP addresses to accept client requests on

4
public ServerSocket() throws IOException
Creates an unbound server socket. When using this constructor, use the bind() method when you
are ready to bind the server socket

If the ServerSocket constructor does not throw an exception, it means that your application has successfully bound
to the specified port and is ready for client requests.

Here are some of the common methods of the ServerSocket class:

SN Methods with Description

1

public int getLocalPort()
Returns the port that the server socket is listening on. This method is useful if you passed in 0 as
the port number in a constructor and let the server find a port for you.

2

public Socket accept() throws IOException
Waits for an incoming client. This method blocks until either a client connects to the server on the
specified port or the socket times out, assuming that the time-out value has been set using the
setSoTimeout() method. Otherwise, this method blocks indefinitely.

3 public void setSoTimeout(int timeout)
Sets the time-out value for how long the server socket waits for a client during the accept().

Preview from Notesale.co.uk

Page 277 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

// Part two is attachment
messageBodyPart =new MimeBodyPart();
String filename ="file.txt";
DataSource source =new FileDataSource(filename);
messageBodyPart.setDataHandler(new DataHandler(source));
messageBodyPart.setFileName(filename);
multipart.addBodyPart(messageBodyPart);

// Send the complete message parts
message.setContent(multipart);

// Send message
Transport.send(message);
System.out.println("Sent message successfully....");
}catch(MessagingException mex){
mex.printStackTrace();
}
}
}

Compile and run this program to send an HTML e-mail:

$ java SendFileEmail
Sent message successfully....

User	
 Authentication	
 Part:	

If it is required to provide user ID and Password to the e-mail server for authentication purpose, then you can set
these properties as follows:

 props.setProperty("mail.user","myuser");
 props.setProperty("mail.password","mypwd");

Rest of the e-mail sending mechanism would remain as explained above.

Preview from Notesale.co.uk

Page 286 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Example:	

The following ThreadClassDemo program demonstrates some of these methods of the Thread class. Consider a
class DisplayMessage which implements Runnable:

// File Name : DisplayMessage.java
// Create a thread to implement Runnable
public class DisplayMessage implements Runnable
{
 private String message;
 public DisplayMessage(String message)
 {
 this.message = message;
 }
 public void run()
 {
 while(true)
 {
 System.out.println(message);
 }
 }
}

Following is another class which extends Thread class:

// File Name : GuessANumber.java
// Create a thread to extentd Thread
public class GuessANumber extends Thread
{
 private int number;
 public GuessANumber(int number)
 {
 this.number = number;
 }
 public void run()
 {
 int counter = 0;
 int guess = 0;
 do
 {
 guess = (int) (Math.random() * 100 + 1);
 System.out.println(this.getName()
 + " guesses " + guess);
 counter++;
 }while(guess != number);
 System.out.println("** Correct! " + this.getName()
 + " in " + counter + " guesses.**");
 }
}

Following is the main program which makes use of above defined classes:

// File Name : ThreadClassDemo.java
public class ThreadClassDemo
{
 public static void main(String [] args)
 {
 Runnable hello = new DisplayMessage("Hello");
 Thread thread1 = new Thread(hello);
 thread1.setDaemon(true);

Preview from Notesale.co.uk

Page 293 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

 thread1.setName("hello");
 System.out.println("Starting hello thread...");
 thread1.start();

 Runnable bye = new DisplayMessage("Goodbye");
 Thread thread2 = new Thread(bye);
 thread2.setPriority(Thread.MIN_PRIORITY);
 thread2.setDaemon(true);
 System.out.println("Starting goodbye thread...");
 thread2.start();

 System.out.println("Starting thread3...");
 Thread thread3 = new GuessANumber(27);
 thread3.start();
 try
 {
 thread3.join();
 }catch(InterruptedException e)
 {
 System.out.println("Thread interrupted.");
 }
 System.out.println("Starting thread4...");
 Thread thread4 = new GuessANumber(75);

 thread4.start();
 System.out.println("main() is ending...");
 }
}

This would produce the following result. You can try this example again and again and you would get different result
every time.

Starting hello thread...
Starting goodbye thread...
Hello
Hello
Hello
Hello
Hello
Hello
Goodbye
Goodbye
Goodbye
Goodbye
Goodbye
.......

Major	
 Java	
 Multithreading	
 Concepts:	

While doing Multithreading programming in Java, you would need to have the following concepts very handy:

• What is thread synchronization?
• Handling threads inter communication
• Handling thread deadlock
• Major thread operations

Preview from Notesale.co.uk

Page 294 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

 if (t == null)
 {
 t = new Thread (this, threadName);
 t.start ();
 }
 }
 void suspend() {
 suspended = true;
 }
 synchronized void resume() {
 suspended = false;
 notify();
 }
}

public class TestThread {
 public static void main(String args[]) {

 RunnableDemo R1 = new RunnableDemo("Thread-1");
 R1.start();

 RunnableDemo R2 = new RunnableDemo("Thread-2");
 R2.start();

 try {
 Thread.sleep(1000);
 R1.suspend();
 System.out.println("Suspending First Thread");
 Thread.sleep(1000);
 R1.resume();
 System.out.println("Resuming First Thread");
 R2.suspend();
 System.out.println("Suspending thread Two");
 Thread.sleep(1000);
 R2.resume();
 System.out.println("Resuming thread Two");
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }
 try {
 System.out.println("Waiting for threads to finish.");
 R1.t.join();
 R2.t.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }
 System.out.println("Main thread exiting.");
 }
}

Here is the output produced by the above program:

Creating Thread-1
Starting Thread-1
Creating Thread-2
Starting Thread-2
Running Thread-1
Thread: Thread-1, 10
Running Thread-2
Thread: Thread-2, 10
Thread: Thread-1, 9

Preview from Notesale.co.uk

Page 303 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Thread: Thread-2, 9
Thread: Thread-1, 8
Thread: Thread-2, 8
Thread: Thread-1, 7
Thread: Thread-2, 7
Suspending First Thread
Thread: Thread-2, 6
Thread: Thread-2, 5
Thread: Thread-2, 4
Resuming First Thread
Suspending thread Two
Thread: Thread-1, 6
Thread: Thread-1, 5
Thread: Thread-1, 4
Thread: Thread-1, 3
Resuming thread Two
Thread: Thread-2, 3
Waiting for threads to finish.
Thread: Thread-1, 2
Thread: Thread-2, 2
Thread: Thread-1, 1
Thread: Thread-2, 1
Thread Thread-1 exiting.
Thread Thread-2 exiting.
Main thread exiting.

Preview from Notesale.co.uk

Page 304 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

clip.loop();
}
}
publicvoid stop()
{
if(clip !=null)
{
 clip.stop();
}
}
}

Now, let us call this applet as follows:

<html>
<title>The ImageDemo applet</title>
<hr>
<appletcode="ImageDemo.class"width="0"height="0">
<paramname="audio"value="test.wav">
</applet>
<hr>
</html>

You can use your test.wav at your PC to test the above example.

Preview from Notesale.co.uk

Page 313 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

include | exclude

@serialData Documents the data written by the writeObject() or
writeExternal() methods @serialData data-description

@serialField Documents an ObjectStreamField component. @serialField field-name field-
type field-description

@since Adds a "Since" heading with the specified since-text to the
generated documentation. @since release

@throws The @throws and @exception tags are synonyms. @throws class-name description

{@value} When {@value} is used in the doc comment of a static field, it
displays the value of that constant: {@value package.class#field}

@version Adds a "Version" subheading with the specified version-text to
the generated docs when the -version option is used. @version version-text

Example:	

Following program uses few of the important tags available for documentation comments. You can make use of
other tags based on your requirements.

The documentation about the AddNum class will be produced in HTML file AddNum.html but same time a master
file with a name index.html will also be created.

import java.io.*;

/**
* <h1>Add Two Numbers!</h1>
* The AddNum program implements an application that
* simply adds two given integer numbers and Prints
* the output on the screen.
* <p>
* Note: Giving proper comments in your program makes it more
* user friendly and it is assumed as a high quality code.
*
* @author Zara Ali
* @version 1.0
* @since 2014-03-31
*/
public class AddNum {
 /**
 * This method is used to add two integers. This is
 * a the simplest form of a class method, just to
 * show the usage of various javadoc Tags.
 * @param numA This is the first paramter to addNum method
 * @param numB This is the second parameter to addNum method
 * @return int This returns sum of numA and numB.
 */
 public int addNum(int numA, int numB) {
 return numA + numB;
 }

 /**
 * This is the main method which makes use of addNum method.
 * @param args Unused.
 * @return Nothing.

Preview from Notesale.co.uk

Page 316 of 320

TUTORIALS POINT	

Simply	
 Easy	
 Learning	

Java Library Classes

This tutorial would cover package java.lang, which provides classes that are fundamental to the design of

the Java programming language. The most important classes are Object, which is the root of the class hierarchy,
and Class, instances of which represent classes at run time.
Here is the list of classes of ackage java.lang. These classes are very important to know for a Java programmer.
Click a class link to know more detail about that class. For a further drill, you can refer standard Java
documentation.

SN Methods with Description

1 Boolean
Boolean

2 Byte
The Byte class wraps a value of primitive type byte in an object.

3 Character
The Character class wraps a value of the primitive type char in an object.

4 Class
Instances of the class Class represent classes and interfaces in a running Java application.

5 ClassLoader
A class loader is an object that is responsible for loading classes.

6 Compiler
The Compiler class is provided to support Java-to-native-code compilers and related services.

7 Double
The Double class wraps a value of the primitive type double in an object.

8 Float
The Float class wraps a value of primitive type float in an object.

9 Integer
The Integer class wraps a value of the primitive type int in an object.

10 Long
The Long class wraps a value of the primitive type long in an object.

11
Math
The class Math contains methods for performing basic numeric operations such as the elementary
exponential, logarithm, square root, and trigonometric functions.

CHAPTER

36

Preview from Notesale.co.uk

Page 318 of 320

